女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

邊緣AI的模型壓縮技術

星星科技指導員 ? 來源:嵌入式計算設計 ? 作者:Rakesh R. Nakod ? 2022-10-19 14:22 ? 次閱讀

深度學習在模型及其數據集方面正在以驚人的速度增長。在應用方面,深度學習市場以圖像識別為主,其次是光學字符識別,以及面部和物體識別。根據 Allied 的市場調查,2020 年全球深度學習市場規模為 68.5 億美元,預計到 2030 年將達到 1799.6 億美元,從 2021 年到 2030 年的復合年增長率為 39.2%。

在某個時間點,人們認為大型和復雜的模型表現更好,但現在它幾乎是一個神話。隨著邊緣AI的發展,越來越多的技術將大型復雜模型轉換為可以在邊緣上運行的簡單模型,所有這些技術結合在一起執行模型壓縮。

什么是模型壓縮?

模型壓縮是在具有低計算能力和內存的邊緣設備上部署SOTA(最先進的)深度學習模型的過程,而不會影響模型在準確性,精度,召回性等方面的性能。模型壓縮廣泛地減少了模型中的兩件事,即大小和延遲。大小減小側重于通過減少模型參數使模型更簡單,從而減少執行中的 RAM 要求和內存中的存儲要求。減少延遲是指減少模型進行預測或推斷結果所花費的時間。模型大小和延遲通常是一起的,大多數技術都會減少兩者。

流行的模型壓縮技術

修剪:

修剪是模型壓縮的最流行的技術,它通過刪除冗余和無關緊要的參數來工作。神經網絡中的這些參數可以是連接器、神經元、通道,甚至是層。它很受歡迎,因為它同時減小了模型的大小并改善了延遲。

pYYBAGNPl6-AZ2uZAAGw_oTIvEs500.png

修剪

修剪可以在訓練模型時或在訓練后完成。有不同類型的修剪技術,包括重量/連接修剪,神經元修剪,過濾器修剪和層修剪。

量化:

當我們在修剪中移除神經元,連接,過濾器,層等以減少加權參數的數量時,權重的大小在量化過程中減小。在此過程中,較大集中的值將映射到較小集中的值。與輸入網絡相比,輸出網絡的值范圍較窄,但保留了大部分信息。

知識提煉:

在知識提煉過程中,一個復雜而大型的模型在一個非常大的數據集上被訓練。微調大型模型后,它可以很好地處理看不見的數據。一旦實現,這些知識就會轉移到較小的神經網絡或模型中。同時使用教師網絡(較大模型)和學生網絡(較小模型)。這里存在兩個方面,知識提煉,其中我們不調整教師模型,而在遷移學習中,我們使用確切的模型和權重,在一定程度上改變模型,并針對相關任務進行調整。

poYBAGNPl7aAcED2AAB8DjxHRCw852.png

知識蒸餾系統

知識、蒸餾算法和師生架構模型是典型知識蒸餾系統的三個主要部分,如上圖所示。

低矩陣分解:

矩陣構成了大多數深度神經架構的大部分。該技術旨在通過應用矩陣或張量分解并將它們變成更小的矩陣來識別冗余參數。當應用于密集 DNN(深度神經網絡)時,此技術可降低 CNN(卷積神經網絡)層的存儲要求和因式分解,并縮短推理時間。具有二維且具有秩 r 的權重矩陣 A 可以分解為更小的矩陣,如下所示。

poYBAGNPl72AUTPYAABK48-5WA8433.png

低矩陣因式分解

模型準確性和性能在很大程度上取決于正確的因式分解和秩選擇。低秩因式分解過程中的主要挑戰是更難實現,并且計算密集型。總體而言,與全秩矩陣表示相比,密集層矩陣的因式分解可導致更小的模型和更快的性能。

由于邊緣AI,模型壓縮策略變得非常重要。這些方法相互補充,可以在整個AI管道的各個階段使用。像張量流和Pytorch這樣的流行框架現在包括修剪和量化等技術。最終,該領域使用的技術數量將會增加。

審核編輯:郭婷

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 連接器
    +關注

    關注

    99

    文章

    15233

    瀏覽量

    139319
  • RAM
    RAM
    +關注

    關注

    8

    文章

    1391

    瀏覽量

    116807
  • 深度學習
    +關注

    關注

    73

    文章

    5554

    瀏覽量

    122489
收藏 人收藏

    評論

    相關推薦
    熱點推薦

    邊緣AI實現的核心環節:硬件選擇和模型部署

    電子發燒友網綜合報道 邊緣AI的實現原理是將人工智能算法和模型部署到靠近數據源的邊緣設備上,使這些設備能夠在本地進行數據處理、分析和決策,而無需將數據傳輸到遠程的云端服務器。
    發表于 05-26 07:09 ?812次閱讀

    邊緣AI MPU深度盤點:品牌、型號與技術特性全解析

    邊緣AI MPU深度盤點:品牌、型號與技術特性全解析 隨著邊緣計算與人工智能的深度融合,邊緣AI
    的頭像 發表于 04-30 17:27 ?1958次閱讀

    Deepseek海思SD3403邊緣計算AI產品系統

    海思SD3403邊緣計算AI框架,提供了一套開放式AI訓練產品工具包,解決客戶低成本AI系統,針對差異化AI 應用場景,自己采集樣本數據,進
    發表于 04-28 11:05

    意法半導體邊緣AI套件中提供的全部工具

    意法半導體邊緣AI套件(ST Edge AI Suite)是一套專為邊緣AI開發設計的集成化工具集合,覆蓋從數據采集、
    的頭像 發表于 04-21 17:46 ?563次閱讀

    首創開源架構,天璣AI開發套件讓端側AI模型接入得心應手

    ,聯發科帶來了全面升級的天璣AI開發套件2.0,在模型庫規模、架構開放程度、前沿端側AI技術支持和端側LoRA訓練落地等方面均迎來全面躍遷,為開發者提供了更全面、更開放、更強大的端側
    發表于 04-13 19:52

    訓練好的ai模型導入cubemx不成功怎么處理?

    訓練好的ai模型導入cubemx不成功咋辦,試了好幾個模型壓縮了也不行,ram占用過大,有無解決方案?
    發表于 03-11 07:18

    AI模型托管原理

    AI模型托管的核心在于將訓練好的AI模型部署在云端或邊緣服務器上,由第三方平臺提供模型運行、管理
    的頭像 發表于 02-26 10:31 ?539次閱讀

    AI賦能邊緣網關:開啟智能時代的新藍海

    在數字化轉型的浪潮中,AI邊緣計算的結合正掀起一場深刻的產業變革。邊緣網關作為連接物理世界與數字世界的橋梁,在AI技術的加持下,正從簡單的
    發表于 02-15 11:41

    研華邊緣AI Box MIC-ATL3S部署Deepseek R1模型

    隨著深度求索(DeepSeek)大模型的發布引發行業熱議,研華科技基于昇騰Atlas平臺邊緣AI Box MIC-ATL3S正式發布與Deepseek R1模型的部署流程。該平臺依托昇
    的頭像 發表于 02-14 16:08 ?1184次閱讀
    研華<b class='flag-5'>邊緣</b><b class='flag-5'>AI</b> Box MIC-ATL3S部署Deepseek R1<b class='flag-5'>模型</b>

    DeepSeek模型成功部署,物通博聯在 AI 賦能工業上持續探索、不斷前行

    和二次開發,DeepSeek R1模型的發布迅速點燃了AI產業的革命之火。 DeepSeek R1 通過蒸餾將大模型的推理能力“壓縮”至小模型
    的頭像 發表于 02-12 11:15 ?634次閱讀

    AI模型部署邊緣設備的奇妙之旅:目標檢測模型

    并非易事,它涉及到從選擇合適的算法架構到針對特定硬件平臺進行優化等一系列復雜的工作。 接下來,我們將詳細介紹如何在資源受限的邊緣設備上成功部署目標檢測模型,探索其背后的原理和技術,并討論解決該領域內常見
    發表于 12-19 14:33

    AI模型部署邊緣設備的奇妙之旅:如何在邊緣端部署OpenCV

    識別、分類、跟蹤、場景重建等。這可能涉及到機器學習和深度學習模型的應用。 簡而言之,圖像處理是計算機視覺的基礎,提供了必要的工具和技術來預處理和優化圖像數據;而計算機視覺則是在此基礎之上,通過更加復雜
    發表于 12-14 09:31

    AI模型部署邊緣設備的奇妙之旅:如何實現手寫數字識別

    系統的智能化水平,還極大地拓展了其應用范圍, 使得嵌入式系統在智能家居、智能交通、智能醫療等領域有了更深層次的運用。AI技術的嵌入,已經成為未來嵌入式系統發展 的一個重要趨勢。踏入邊緣端部署的第一步
    發表于 12-06 17:20

    AI模型托管原理分析

    AI模型托管是指將訓練好的AI模型部署在云端或邊緣服務器上,由第三方平臺提供模型運行、管理和優化
    的頭像 發表于 11-07 09:33 ?738次閱讀

    云天勵飛邊緣AI推動大模型規模化應用落地

    2024年毫無疑問是大模型應用落地元年,面對靈活多變的任務和復雜的場景環境,用邊緣AI打造低成本、高效能、強落地的大模型應用是關鍵。
    的頭像 發表于 09-18 14:59 ?624次閱讀