在硬件設計過程中,當原理圖設計完成后需要提交EDA團隊進行PCB的繪制,其中傳輸線阻抗的控制是重要的一項內容。在提交PCB設計說明書時,需要對線寬/線間距做出要求;在PCB設計過程中,需要與EDA設計人員進行溝通,可能會對線寬/線間距、相鄰層厚度做適當調整;在提交PCB制版后,廠家會結合實際生產條件進行阻抗調整,這也需要硬件開發人員進行確認。因此,作為硬件開發人員,需要對傳輸線阻抗的原理和計算方法有所了解。傳輸線阻抗控制主要有兩種:單端阻抗和差分阻抗。單端阻抗的阻值一般控制在50歐姆左右,差分阻抗一般控制在100歐姆左右。接下來介紹傳輸線特征阻抗的等效模型,并結合具體單板PCB設計,介紹如何利用Polar Si9000工具進行特征阻抗的計算。
一、傳輸線的等效模型
1. 等效模型及參數

2.參數說明
特征阻抗主要與線寬,絕緣層厚度等參數有關。線寬越大,特征阻抗越小;絕緣層越厚,相應的特征阻抗越大。阻抗控制采用以下參數:介質常數(Er1):4.0,FR4材料。下線寬(W1):設計線寬(假設為W);上線寬(W2):外層走線=W-1; 內層走線=W-0.5;銅層厚度(T1):分為表層與內層,如下表。需電鍍填銅層銅厚(表層):電鍍填銅層基銅銅厚(OZ) | 1/3 OZ | 1/2OZ | 1 OZ |
計算銅厚(mil) | 1.7 | 2.0 | 2.7 |
非電鍍填銅層銅厚(OZ) | 1/2OZ | 1 OZ | 1.5OZ |
計算銅厚(mil) | 0.6 | 1.2 | 2.56 |
二、具體計算實例:
計算所使用的PCB模型為某低速業務板工裝測試背板,有18層,其結構如下:表1:L1 | --------------------------------------- | 0.5oz +電鍍 |
PP 2116 4.495mil | ||
L2 | 1oz | |
CORE 0.21 8.27mil | ||
L3 | --------------------------------------- | 1oz |
PP 1080+7628 9.445mil | ||
L4 | --------------------------------------- | 1oz |
CORE 0.21 8.27mil | ||
L5 | --------------------------------------- | 1oz |
PP 1080+7628 9.445mil | ||
L6 | --------------------------------------- | 1oz |
CORE 0.21 8.27mil | ||
L7 | --------------------------------------- | 1oz |
PP 1080+7628 9.82mil | ||
L8 | --------------------------------------- | 1oz |
CORE 0.15 5.9mil | ||
L9 | --------------------------------------- | 1oz |
PP 3313 3.42mil | ||
CORE 1(0.5oz) 37.99mil | ||
PP 3313 3.37mil | ||
L10 | --------------------------------------- | 1oz |
CORE 0.15 5.9mil | ||
L11 | --------------------------------------- | 1oz |
PP 1080+7628 9.8325mil | ||
L12 | --------------------------------------- | 1oz |
CORE 0.21 8.27mil | ||
L13 | --------------------------------------- | 1oz |
PP 1080+7628 9.4575mil | ||
L14 | --------------------------------------- | 1oz |
CORE 0.21 8.27mil | ||
L15 | --------------------------------------- | 1oz |
PP 1080+7628 9.445mil | ||
L16 | --------------------------------------- | 1oz |
CORE 0.21 8.27mil | ||
L17 | --------------------------------------- | 1oz |
PP 2116 4.495mil | ||
L18 | ---------------------------------------- | 0.5oz+電鍍 |
阻抗計算值 | ||||||
層別 | 調整線寬/線間距 | 計算值(ohm) | H1(mil) | Er1 | H2(mil) | Er2 |
L1/18 | 7.6 mil to 7 mil | 49.6 | 4.5 | 3.95 | ||
L1/18 | 7/13.5 mil to 5.9/14.6 mil | 98.3 | 4.5 | 3.95 | ||
L3/16/5/14 | 7.6 mil | 49.6 | 8.27 | 3.95 | 10.7 | 3.93 |
L3/16/5/14 | 7/13.5 mil | 98.1 | 8.27 | 3.95 | 10.7 | 3.93 |
L7/12 | 7.6 mil | 50 | 8.27 | 3.95 | 11.07 | 3.93 |
L7/12 | 7/13.5 mil | 98.7 | 8.27 | 3.95 | 11.07 | 3.93 |
L9/10 | 7.6 mil to 8 mil | 51.5 | 5.9 | 3.65 | 53.18 | 3.89 |
L9/10 | 7/13.5 mil | 99.1 | 5.9 | 3.65 | 53.18 | 3.89 |
L9的屏蔽層為: | L8/L11 | |||||
L10的屏蔽層為: | L8/L11 | |||||
其他層鄰層屏蔽 | ||||||
2.1 表層(L1/L18)單端阻抗計算:(單位:mil)

2.2表層(L1/L18)差分線阻抗計算:(單位:mil)

2.3內層(L3/L10)單端阻抗計算:(單位:mil)
以L3層為例,參數設置如下:
2.4內層差分線(L3/L10)阻抗計算: (單位:mil)
以L3層為例,參數設置如下:
2.5 相鄰信號層的阻抗計算
理論上相鄰信號層的阻抗計算應該用如下模型,如第9第10兩層。但是這樣非常繁瑣,可以簡化成2.3,2.4中所述的模型,實際廠家給出的參數也證明了這一點。只要將H1,H2,Er1 ,Er1作相應調整即可,具體參數見表1,表2中所示。
三、總結
本文介紹了傳輸線特征阻抗的等效模型,并結合具體單板PCB設計,介紹了利用Polar Si9000工具計算特征阻抗的方法,希望能對大家有所幫助。審核編輯 :李倩
聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。
舉報投訴
-
阻抗
+關注
關注
17文章
970瀏覽量
47046 -
PCB設計
+關注
關注
396文章
4784瀏覽量
89262 -
傳輸線
+關注
關注
0文章
380瀏覽量
24512
原文標題:【PCB設計】傳輸線特征阻抗的計算方法及實例
文章出處:【微信號:mcu168,微信公眾號:硬件攻城獅】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
熱點推薦
知識分享-傳輸線的返回電流(信號完整性揭秘)
信號完整性揭秘-于博士SI設計手記3.3傳輸線的返回電流按照傳統的電路理論,電流要流到互連線的末端,然后從另一條路徑回流,才能形成電流回路。如果傳輸線無限長,信號電壓施加到傳輸線上后,信號永遠也

傳輸線高頻參數之Crosstalk
是由于電信號在通過傳輸線時,產生的電場線穿過了相鄰的傳輸線,而導致相鄰的傳輸線上也產生了電信號,如上圖所示,用網分測試的時候,差分S參數Sdd31表示近端串擾,Sd

PCB制板廠加工問題很大啊,高速PCB傳輸線阻抗一直往上跑
都竄不高,走線越長,竄得越高!Chris給大家做個簡單的仿真看看哈,假設我們設置一個內層的傳輸線疊層,使得差分線在線寬5mil,間距9mil的情況下滿足100歐姆的阻抗要求。
首先我們設置這對差分線
發表于 04-07 17:27
PCB Layout中的三種走線策略
的情況。
不同角度走線的拐角線寬變化直角走線的對信號的影響就是主要體現在三個方面:一是拐角可以等效為傳輸線上的容性負載,減緩上升時間;二是阻抗
發表于 03-13 11:35
從驅動端到串聯電阻之間的這一段走線應該走成多少阻抗呢?
例如,驅動器內阻為20歐,理論上采用驅動端串聯30歐電阻,與50歐特征阻抗的傳輸線進行匹配,但是從驅動端到串聯電阻之間的這一段走線應該走成多少阻抗
發表于 01-08 07:28
DAC3482的I通道輸出電路,傳輸線變壓器有什么作用?
下圖是DAC3482的I通道輸出電路,這里T11是1:1的傳輸線變壓器,T4是4:1的變壓器。如果IOUTA2是20mA,IOUTA1是0mA,求分析下此時IOUTA2輸出是多少,為什么?這里的傳輸線變壓器有什么作用?前面兩個100歐電阻中間接地有啥作用?
發表于 12-20 07:50
阻抗對信號傳輸的影響 阻抗測量儀器的選擇
對信號傳輸的影響主要體現在以下幾個方面: 信號反射 :如果信號源的輸出阻抗和傳輸線的輸入阻抗不匹配,就可能會發生信號反射,使得信號無法完全進入傳輸線
平衡傳輸線標準的重要性
對于需要長距離通信的系統。本文將探討平衡傳輸線標準的重要性。 一、平衡傳輸線標準的必要性 1. 提高信號完整性 在長距離傳輸中,信號完整性是一個關鍵問題。不平衡傳輸線容易受到電磁干擾(
評論