女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

詳解基于深度學(xué)習(xí)的偽裝目標(biāo)檢測

中科院長春光機所 ? 來源:極市平臺 ? 作者:極市平臺 ? 2021-03-12 10:42 ? 次閱讀

最后是O2OGM模塊,將Conv6-3提取的顯著性目標(biāo)特征信息與Conv2-2提取的邊緣特征結(jié)合后的特征分別與Conv3-3、Conv4-3、Conv5-3、Conv6-3每層提取的顯著性目標(biāo)特征進行融合,即圖中FF模塊的操作。FF操作很簡單,就是將高層特征上采樣然后進行拼接的操作,就可以達到融合的效果。

PFANet的結(jié)構(gòu)相對簡單,采用VGG網(wǎng)絡(luò)作為特征提取網(wǎng)絡(luò),然后將前兩層特征稱為低層特征,后三層特征稱為高層特征,對他們采用了不同的方式進行特征增強,以增強檢測效果。

首先是對于高層特征,先是采用了一個CPFE來增大感受野,然后再接一個通道注意力模塊,即完成了對高層特征的特征增強(這里的這個CPFE,其實就是ASPP)。

然后再對經(jīng)過了CPFE后的高層特征使用通道注意力(CA)。

92b43976-7e43-11eb-8b86-12bb97331649.png

以上即是高層特征的增強方法,而對于低層特征,處理得則更為簡單,只需要使用空間注意力模塊(SA),即可完成。

92ee9dfa-7e43-11eb-8b86-12bb97331649.jpg

整個PFANet的網(wǎng)絡(luò)結(jié)構(gòu)很清晰,如下圖所示。

介紹完EGNet和PFANet兩種方法以后,就剩下SINet了。SINet的思路來自于19年的一篇CVPR的文章《.Cascaded partial decoder for fast and accurate salient object detection》。這篇文章里提出了CPD的這樣一個結(jié)構(gòu),具體的可以取搜索一下這篇論文,詳細(xì)了解一下。

接下來我將介紹一個用于偽裝目標(biāo)檢測的網(wǎng)絡(luò)SINet。假設(shè)你是一頭饑腸轆轆的雄獅,此刻你掃視著周圍,視線突然里出現(xiàn)了兩匹斑馬,他們就是你今天的獵物,美食。確定好了目標(biāo)之后,那么就開始你的獵殺時刻。所以整個過程是你先掃視周圍,我們稱之為搜索,然后,就是確認(rèn)目標(biāo),開始獵殺,我們稱之為確認(rèn)。我們的SINet就是這樣的一個結(jié)構(gòu),他分為搜索和確認(rèn)兩個模塊,前者用于搜索偽裝目標(biāo),后者用于精確定位去檢測他。

我們現(xiàn)在就具體來看看我們的SINet到底是怎么一回事。首先,我們都知道低層特征有著較多的空間細(xì)節(jié),而我們的高層特征,卻有著較多的語義信息。所以低層的特征我們可以用來構(gòu)建目標(biāo)區(qū)域,而高層特征我們則可以用來進行目標(biāo)定位。我們將這樣一張圖片,經(jīng)過一個ResNet的特征提取器。按照我們剛才的說法,于是我們將前兩層稱為低層特征,最后兩層稱之為高層特征,而第三層我們稱之為中層特征。那么有了這樣的五層特征圖,東西已經(jīng)給我們了?我們該怎么去利用好這些東西呢?

首先是我們的搜索模塊,通過特征提取,我們得到了這么一些特征,我們希望能夠從這些特征中搜索到我們想要的東西。那我們想要的是什么呢?自然就是我們的偽裝線索了。所以我們需要對我們的特征們做一些增強的處理,來幫助我們完成搜索的這樣一個任務(wù)。而我們用到的方法就是RF。我們來看一下具體是怎么樣實現(xiàn)的。首先我們把整個模塊分為5個分支,這五個分支都進行了1×1的卷積降維,我們都知道,空洞卷積的提出,其目的就是為了增大感受野,所以我們對第一個分支進行空洞數(shù)為3的空洞卷積,對第二個分支進行空洞數(shù)為5的空洞卷積,對第3個分支進行空洞數(shù)為7的空洞卷積,然后將前四個分支的特征圖拼接起來,這時候,我們再采用一個1×1卷積降維的操作,與第五個分支進行相加的操作,最后輸出增強后的特征圖。

94050652-7e43-11eb-8b86-12bb97331649.jpg

這個RF的結(jié)構(gòu)來自于ECCV2018的一篇論文《 Receptive field block net for accurate and fast object detection》,其作用就是幫助我們獲得足夠的感受野。

我們用RF對感受野增大來進行搜索,那么搜索過后,我們得到了增強后的候選特征。我們要從候選特征得到我們最后要的偽裝目標(biāo)的檢測結(jié)果,這里我們用到的方法是PDC模塊(即是部分解碼組件)。

具體操作是這樣的,所以接下來就應(yīng)該是對它們進行處理了逐元素相乘方式來減少相鄰特征之間的差距。我們把RF增強后的特征圖作為輸入,輸入到網(wǎng)絡(luò)里面。首先對低層的進行一個上采樣,然后進行3×3的卷積操作(這里面包含了卷積層,BN層還有Relu層),然后與更高一層的特征圖進行乘法的這樣一個操作,我們?yōu)槭裁词褂弥鹪叵喑四兀恳驗橹鹪叵喑朔绞侥軠p少相鄰特征之間的差距。然后我們再與輸入的低層特征進行拼接。

943d0340-7e43-11eb-8b86-12bb97331649.jpg

我們前面提到了,我們利用增強后的特征通過PDC得到了我們想要得到的檢測結(jié)果,但這樣的一個結(jié)果足夠精細(xì)嗎?其實,這樣得到的檢測結(jié)果是比較粗略的。這是為什么呢?這是因為我們的特征之間并不是有和偽裝檢測不相關(guān)的特征?對于這樣的多余的特征,我們要消滅掉。我們將前面得到的檢測圖稱之為,而我們要得到精細(xì)的結(jié)果圖,就得使用我們的注意力機制了。這里我們引入了搜索注意力,具體是怎么實現(xiàn)的呢?大家想一想我們前面把特征分成了低層特征、高層特征還有中層特征。我們平時一般都叫低層特征和高層特征,很少有提到中層特征的。其實我們這里這樣叫,是有打算的,我們認(rèn)為中層特征他既不像低層特征那么淺顯,也不像高層特征那樣抽象,所以我們對他進行一個卷積操作(但是我們的卷積核用的是高斯核函數(shù)方差取32,核的尺寸我們?nèi)?,我們學(xué)過數(shù)字圖像處理,都知道這樣的一個操作能起到一個濾波的作用,我們的不相關(guān)特征能被過濾掉)但是有同學(xué)就會問了,那你這樣一過濾,有用的特征不也過濾掉了嗎?基于這樣的考慮,我們把過濾后的特征圖與剛才的這個再來做一個函數(shù),什么函數(shù)呢?就是一個最大化函數(shù),這樣我們不就能來突出偽裝圖初始的偽裝區(qū)域了嗎?

SINet整體的框架如圖所示:

94cda62a-7e43-11eb-8b86-12bb97331649.jpg

講了這么多,我們最后來看看實驗的效果,通過對這三篇文章的復(fù)現(xiàn),我得到了下面的這樣一些結(jié)果。

951437b6-7e43-11eb-8b86-12bb97331649.jpg

可以看出,在精度指標(biāo)的評價方面,SINet相比于其他兩種方法都有很大提升,而PFANet模型結(jié)構(gòu)雖然很簡單,但他的效果也是最差的。

下面我們再看看可視化的效果:

責(zé)任編輯:lq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 模塊
    +關(guān)注

    關(guān)注

    7

    文章

    2783

    瀏覽量

    49622
  • 檢測
    +關(guān)注

    關(guān)注

    5

    文章

    4605

    瀏覽量

    92541
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5554

    瀏覽量

    122491

原文標(biāo)題:詳解基于深度學(xué)習(xí)的偽裝目標(biāo)檢測

文章出處:【微信號:cas-ciomp,微信公眾號:中科院長春光機所】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦
    熱點推薦

    labview調(diào)用yolo目標(biāo)檢測、分割、分類、obb

    labview調(diào)用yolo目標(biāo)檢測、分割、分類、obb、pose深度學(xué)習(xí),支持CPU和GPU推理,32/64位labview均可使用。 (yolov5~yolov12)
    發(fā)表于 03-31 16:28

    AI模型部署邊緣設(shè)備的奇妙之旅:目標(biāo)檢測模型

    的是百度的Picodet模型,它是一種基于深度卷積網(wǎng)絡(luò)(DNN)的輕量級目標(biāo)檢測模型,具有非常高的檢測精度,可以在低算力設(shè)備進行實時的端到端推理檢測
    發(fā)表于 12-19 14:33

    NPU在深度學(xué)習(xí)中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其核心驅(qū)動力之一,已經(jīng)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和價值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡(luò)處理單元)是專門為深度學(xué)習(xí)
    的頭像 發(fā)表于 11-14 15:17 ?1717次閱讀

    GPU深度學(xué)習(xí)應(yīng)用案例

    GPU在深度學(xué)習(xí)中的應(yīng)用廣泛且重要,以下是一些GPU深度學(xué)習(xí)應(yīng)用案例: 一、圖像識別 圖像識別是深度學(xué)習(xí)
    的頭像 發(fā)表于 10-27 11:13 ?1117次閱讀

    AI大模型與深度學(xué)習(xí)的關(guān)系

    AI大模型與深度學(xué)習(xí)之間存在著密不可分的關(guān)系,它們互為促進,相輔相成。以下是對兩者關(guān)系的介紹: 一、深度學(xué)習(xí)是AI大模型的基礎(chǔ) 技術(shù)支撐 :深度
    的頭像 發(fā)表于 10-23 15:25 ?2694次閱讀

    FPGA做深度學(xué)習(xí)能走多遠?

    ,共同進步。 歡迎加入FPGA技術(shù)微信交流群14群! 交流問題(一) Q:FPGA做深度學(xué)習(xí)能走多遠?現(xiàn)在用FPGA做深度學(xué)習(xí)加速成為一個熱門,深鑒科技,商湯,曠視科技等都有基于FPG
    發(fā)表于 09-27 20:53

    目標(biāo)檢測與識別技術(shù)有哪些

    目標(biāo)檢測與識別技術(shù)是計算機視覺領(lǐng)域的重要研究方向,廣泛應(yīng)用于安全監(jiān)控、自動駕駛、醫(yī)療診斷、工業(yè)自動化等領(lǐng)域。 目標(biāo)檢測與識別技術(shù)的基本概念 目標(biāo)
    的頭像 發(fā)表于 07-17 09:40 ?1206次閱讀

    目標(biāo)檢測與識別技術(shù)的關(guān)系是什么

    目標(biāo)檢測與識別技術(shù)是計算機視覺領(lǐng)域的兩個重要研究方向,它們之間存在著密切的聯(lián)系和相互依賴的關(guān)系。 一、目標(biāo)檢測與識別技術(shù)的概念 目標(biāo)
    的頭像 發(fā)表于 07-17 09:38 ?1142次閱讀

    慧視小目標(biāo)識別算法 解決目標(biāo)檢測中的老大難問題

    隨著深度學(xué)習(xí)和人工智能技術(shù)的興起與技術(shù)成熟,一大批如FasterR-CNN、RetinaNet、YOLO等可以在工業(yè)界使用的目標(biāo)檢測算法已逐步成熟并進入實際應(yīng)用,大多數(shù)場景下的
    的頭像 發(fā)表于 07-17 08:29 ?899次閱讀
    慧視小<b class='flag-5'>目標(biāo)</b>識別算法   解決<b class='flag-5'>目標(biāo)</b><b class='flag-5'>檢測</b>中的老大難問題

    深度學(xué)習(xí)在工業(yè)機器視覺檢測中的應(yīng)用

    隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,其在工業(yè)機器視覺檢測中的應(yīng)用日益廣泛,并展現(xiàn)出巨大的潛力。工業(yè)機器視覺檢測是工業(yè)自動化領(lǐng)域的重要組成部分,通過圖像處理和計算機視覺技術(shù),實現(xiàn)對產(chǎn)品表面缺陷、
    的頭像 發(fā)表于 07-08 10:40 ?1778次閱讀

    基于深度學(xué)習(xí)的無人機檢測與識別技術(shù)

    隨著無人機技術(shù)的快速發(fā)展,無人機在軍事、民用、商業(yè)等多個領(lǐng)域的應(yīng)用日益廣泛。然而,無人機的廣泛使用也帶來了諸多挑戰(zhàn),如空域安全、隱私保護等問題。因此,開發(fā)高效、準(zhǔn)確的無人機檢測與識別技術(shù)顯得尤為重要。本文將深入探討基于深度學(xué)習(xí)
    的頭像 發(fā)表于 07-08 10:32 ?2158次閱讀

    基于AI深度學(xué)習(xí)的缺陷檢測系統(tǒng)

    在工業(yè)生產(chǎn)中,缺陷檢測是確保產(chǎn)品質(zhì)量的關(guān)鍵環(huán)節(jié)。傳統(tǒng)的人工檢測方法不僅效率低下,且易受人為因素影響,導(dǎo)致誤檢和漏檢問題頻發(fā)。隨著人工智能技術(shù)的飛速發(fā)展,特別是深度學(xué)習(xí)技術(shù)的崛起,基于A
    的頭像 發(fā)表于 07-08 10:30 ?2347次閱讀

    深度學(xué)習(xí)在視覺檢測中的應(yīng)用

    深度學(xué)習(xí)是機器學(xué)習(xí)領(lǐng)域中的一個重要分支,其核心在于通過構(gòu)建具有多層次的神經(jīng)網(wǎng)絡(luò)模型,使計算機能夠從大量數(shù)據(jù)中自動學(xué)習(xí)并提取特征,進而實現(xiàn)對復(fù)雜任務(wù)的處理和理解。這種
    的頭像 發(fā)表于 07-08 10:27 ?1188次閱讀

    基于深度學(xué)習(xí)的小目標(biāo)檢測

    在計算機視覺領(lǐng)域,目標(biāo)檢測一直是研究的熱點和難點之一。特別是在小目標(biāo)檢測方面,由于小目標(biāo)在圖像中所占比例小、特征不明顯,使得
    的頭像 發(fā)表于 07-04 17:25 ?1902次閱讀

    深度學(xué)習(xí)模型訓(xùn)練過程詳解

    深度學(xué)習(xí)模型訓(xùn)練是一個復(fù)雜且關(guān)鍵的過程,它涉及大量的數(shù)據(jù)、計算資源和精心設(shè)計的算法。訓(xùn)練一個深度學(xué)習(xí)模型,本質(zhì)上是通過優(yōu)化算法調(diào)整模型參數(shù),使模型能夠更好地擬合數(shù)據(jù),提高預(yù)測或分類的準(zhǔn)
    的頭像 發(fā)表于 07-01 16:13 ?2438次閱讀