女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

深度學習中類別激活熱圖可視化背后的思想

電子設計 ? 來源:電子設計 ? 作者:電子設計 ? 2022-02-12 16:04 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

作者:Valentina Alto
編譯:ronghuaiyang

導讀

使用Keras實現圖像分類中的激活熱圖的可視化,幫助更有針對性的改進模型。

類別激活圖(CAM)是一種用于計算機視覺分類任務的強大技術。它允許研究人員檢查被分類的圖像,并了解圖像的哪些部分/像素對模型的最終輸出有更大的貢獻。

基本上,假設我們構建一個CNN,目標是將人的照片分類為“男人”和“女人”,然后我們給它提供一個新照片,它返回標簽“男人”。有了CAM工具,我們就能看到圖片的哪一部分最能激活“Man”類。如果我們想提高模型的準確性,必須了解需要修改哪些層,或者我們是否想用不同的方式預處理訓練集圖像,這將非常有用。

在本文中,我將向你展示這個過程背后的思想。為了達到這個目的,我會使用一個在ImageNet上預訓練好的CNN, Resnet50。

我在這個實驗中要用到的圖像是,這只金毛獵犬:

首先,讓我們在這張圖上嘗試一下我們預訓練模型,讓它返回三個最有可能的類別:

from keras.applications.resnet50 import ResNet50 from keras.preprocessing import image from keras.applications.resnet50 import preprocess_input, decode_predictions import numpy as npmodel = ResNet50(weights='imagenet')img_path = 'golden.jpg' img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x)preds = model.predict(x) # decode the results into a list of tuples (class, description, probability) print('Predicted:', decode_predictions(preds, top=3)[0])

pIYBAGAIcnmAW7XHAACQM7Rb8AQ223.png

如你所見,第一個結果恰好返回了我們正在尋找的類別:Golden retriver。

現在我們的目標是識別出我們的照片中最能激活黃金標簽的部分。為此,我們將使用一種稱為“梯度加權類別激活映射(Grad-CAM)”的技術(官方論文:https://arxiv.org/abs/1610.02391)。

這個想法是這樣的:想象我們有一個訓練好的CNN,我們給它提供一個新的圖像。它將為該圖像返回一個類。然后,如果我們取最后一個卷積層的輸出特征圖,并根據輸出類別對每個通道的梯度對每個通道加權,我們就得到了一個熱圖,它表明了輸入圖像中哪些部分對該類別激活程度最大。

讓我們看看使用Keras的實現。首先,讓我們檢查一下我們預先訓練過的ResNet50的結構,以確定我們想要檢查哪個層。由于網絡結構很長,我將在這里只顯示最后的block:

from keras.utils import plot_model plot_model(model)

o4YBAGAIcr2AB_55AAFPjDgG7Bk409.png

讓我們使用最后一個激活層activation_49來提取我們的feature map。

golden = model.output[:, np.argmax(preds[0])] last_conv_layer = model.get_layer('activation_49') from keras import backend as K grads = K.gradients(golden, last_conv_layer.output)[0] pooled_grads = K.mean(grads, axis=(0, 1, 2)) iterate = K.function([model.input], [pooled_grads, last_conv_layer.output[0]]) pooled_grads_value, conv_layer_output_value = iterate([x]) for i in range(pooled_grads.shape[0]): conv_layer_output_value[:, :, i] *= pooled_grads_value[i] heatmap = np.mean(conv_layer_output_value, axis=-1) import matplotlib.pyplot as plt heatmap = np.maximum(heatmap, 0) heatmap /= np.max(heatmap) plt.matshow(heatmap)

這個熱圖上看不出什么東西出來。因此,我們將該熱圖與輸入圖像合并如下:

import cv2 img = cv2.imread(img_path) heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0])) heatmap = np.uint8(255 * heatmap) heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) merged= heatmap * 0.4 + imgplt.imshow(merged)

如你所見,圖像的某些部分(如鼻子部分)特別的指示出了輸入圖像的類別。

英文原文:https://valentinaalto.medium.com/class-activation-maps-in-deep-learning-14101e2ec7e1
本文轉自:AI公園,作者:Valentina Alto,編譯:ronghuaiyang,
轉載此文目的在于傳遞更多信息,版權歸原作者所有。

審核編輯:何安

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 深度學習
    +關注

    關注

    73

    文章

    5561

    瀏覽量

    122825
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    如何使用協議分析儀進行數據分析與可視化

    分析與可視化需結合工具功能與業務場景: 快速診斷:依賴內置統計和IO Graph。 深度分析:導出數據至Python/R進行統計建模。 長期監控:集成至SIEM/APM系統實現自動。 通過合理選擇工具鏈(如
    發表于 07-16 14:16

    結構可視化:利用數據編輯器剖析數據內在架構?

    動路徑,為數據驅動的決策提供堅實基礎。借助數據編輯器,企業還能更便捷地對可視化呈現的數據進行編輯、調整,以滿足不同分析場景的需求,進一步優化數據管理流程。 以神經網絡的可視化展示為例,在深度
    的頭像 發表于 05-07 18:42 ?210次閱讀

    VirtualLab Fusion應用:3D系統可視化

    描述和F-Theta透鏡的應用示例。 光學系統的3D-可視化 VirtualLab Fusion提供的工具可以實現光學系統的3D可視化,因此可以用于檢查元件的位置,以及快速了解系統內部的光傳播情況
    發表于 04-30 08:47

    可視化組態物聯網平臺是什么

    可視化組態物聯網平臺是物聯網技術與組態技術相結合的產物,是通過提供豐富的圖形組件和可視化元素,讓用戶能夠以直觀、便捷的方式對物聯網數據進行監控、分析和管理的平臺。以下是其具體介紹: 定義 組態
    的頭像 發表于 04-21 10:40 ?305次閱讀

    可視化數據大屏:連線構建視覺新秩序 #數據可視化 #可視化大屏

    可視化
    阿梨是蘋果
    發布于 :2025年03月18日 16:12:04

    VirtualLab Fusion可視化設置

    摘要 VirtualLab Fusion的全局選項對話框可以輕松定制軟件的外觀和感覺。還可以保存和加載全局選項文件,以便可以輕松地將偏好設置從一個設備轉移到另一個設備。本文檔說明了與可視化和結果
    發表于 02-25 08:51

    VirtualLab Fusion應用:光波導k域布局可視化(“神奇的圓環”)

    Fusion的k-Layout可視化計算器 查看設置 k布局可視化計算器:波長 k-Layout可視化計算器:介質 k布局可視化
    發表于 02-21 08:53

    七款經久不衰的數據可視化工具!

    數據量的激增,單純通過數字和文本來分析數據已不再高效。數據可視化則提供了一種直觀、互動性強的方式,幫助人們通過視覺元素,如柱狀、折線圖、餅、熱力圖等圖表形式,理解復雜的數據關系。 二、數據
    發表于 01-19 15:24

    光學系統的3D可視化

    **摘要 ** 為了從根本上了解光學系統的特性,對其組件進行可視化并顯示光的傳播情況大有幫助。為此,VirtualLab Fusion 提供了顯示光學系統三維可視化的工具。這些工具還可用于檢查元件
    發表于 01-06 08:53

    什么是大屏數據可視化?特點有哪些?

    大屏數據可視化是指通過大屏幕展示大量數據和信息,以直觀、可視化的方式幫助用戶理解和分析數據。這種展示方式通常用于展示復雜的數據集、實時監控系統、企業管理儀表盤等。以下是關于 大屏數據可視化 的詳細
    的頭像 發表于 12-16 16:59 ?694次閱讀

    如何找到適合的大屏數據可視化系統

    選擇合適的大屏數據可視化系統是企業或組織在數字轉型過程至關重要的一步。一個優秀的大屏數據可視化系統能夠實時呈現關鍵業務數據,提升決策效率,同時提供直觀、易于理解的視覺呈現,助力企業
    的頭像 發表于 12-13 15:47 ?496次閱讀

    Minitab 數據可視化技巧

    在數據分析領域,數據可視化是一種將數據以圖形或圖像的形式展示出來的技術,它可以幫助我們更直觀地理解數據,發現數據的模式、趨勢和異常。Minitab作為一款專業的統計分析軟件,提供了多種數據可視化
    的頭像 發表于 12-02 15:40 ?1417次閱讀

    智慧能源可視化監管平臺——助力可視化能源數據管理

    博達可視化大屏設計平臺在智慧能源領域的價值體現在實時監控、數據可視化、決策支持和效率提升等方面。借助該平臺,企業可以輕松搭建智慧能源類可視化大屏,更加精確和高效地管理生產和生活,實現能源的可持續發展。
    的頭像 發表于 11-29 10:00 ?958次閱讀
    智慧能源<b class='flag-5'>可視化</b>監管平臺——助力<b class='flag-5'>可視化</b>能源數據管理

    智慧樓宇可視化的優點

    智慧樓宇可視化是指通過數據可視化技術來展示和分析樓宇的各種數據,為樓宇管理者和用戶提供直觀、清晰的信息展示和決策支持。以下是智慧樓宇可視化的優點,詳細介紹其在樓宇管理和運營的重要作用
    的頭像 發表于 11-19 14:25 ?487次閱讀

    工業數據可視化管理平臺是什么

    數據可視化管理平臺應運而生,它以其獨特的功能和優勢,正在成為工業數字轉型的重要工具。 工業數據可視化管理平臺的定義 工業數據可視化管理平臺是一種集成了數據采集、處理、分析和展示功能的
    的頭像 發表于 08-28 14:21 ?643次閱讀