女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

人工智能制造業(yè)應用場景

智能制造 ? 來源:數(shù)字化企業(yè) ? 作者:數(shù)字化企業(yè) ? 2021-01-06 10:17 ? 次閱讀

隨著智能制造熱潮的到來,人工智能應用已經貫穿于設計、生產、管理和服務等制造業(yè)的各個環(huán)節(jié)。

人工智能的概念第一次被提出,是在20世紀50年代,距今已六十余年的時間。然而直到近幾年,人工智能才迎來爆發(fā)式的增長,究其原因,主要在于日趨成熟的物聯(lián)網、大數(shù)據(jù)、云計算等技術。

物聯(lián)網使得大量數(shù)據(jù)能夠被實時獲取,大數(shù)據(jù)為深度學習提供了數(shù)據(jù)資源及算法支撐,云計算則為人工智能提供了靈活的計算資源。這些技術的有機結合,驅動著人工智能技術不斷發(fā)展,并取得了實質性的進展。AlphaGo與李世石的人機大戰(zhàn),更是將人工智能推到了風口浪尖,引爆了新一輪的人工智能熱潮。

此后的近幾年,關于人工智能的研究和應用開始遍地開花。隨著智能制造熱潮的到來,人工智能應用已經貫穿于設計、生產、管理和服務等制造業(yè)的各個環(huán)節(jié)。
01

人工智能技術的三個層次

人工智能技術和產品經過過去幾年的實踐檢驗,目前應用較為成熟,推動著人工智能與各行各業(yè)的加速融合。從技術層面來看,業(yè)界廣泛認為,人工智能的核心能力可以分為三個層面,分別是計算智能、感知智能、認知智能。

1、計算智能

計算智能即機器具備超強的存儲能力和超快的計算能力,可以基于海量數(shù)據(jù)進行深度學習,利用歷史經驗指導當前環(huán)境。隨著計算力的不斷發(fā)展,儲存手段的不斷升級,計算智能可以說已經實現(xiàn)。例如AlphaGo利用增強學習技術完勝世界圍棋冠軍;電商平臺基于對用戶購買習慣的深度學習,進行個性化商品推薦等。

2、感知智能

感知智能是指使機器具備視覺、聽覺、觸覺等感知能力,可以將非結構化的數(shù)據(jù)結構化,并用人類的溝通方式與用戶互動。隨著各類技術發(fā)展,更多非結構化數(shù)據(jù)的價值被重視和挖掘,語音、圖像、視頻、觸點等與感知相關的感知智能也在快速發(fā)展。無人駕駛汽車、著名的波士頓動力機器人等就運用了感知智能,它通過各種傳感器,感知周圍環(huán)境并進行處理,從而有效指導其運行。

3、認知智能

相較于計算智能和感知智能,認知智能更為復雜,是指機器像人一樣,有理解能力、歸納能力、推理能力,有運用知識的能力。目前認知智能技術還在研究探索階段,如在公共安全領域,對犯罪者的微觀行為和宏觀行為的特征提取和模式分析,開發(fā)犯罪預測、資金穿透、城市犯罪演化模擬等人工智能模型和系統(tǒng);在金融行業(yè),用于識別可疑交易、預測宏觀經濟波動等。要將認知智能推入發(fā)展的快車道,還有很長一段路要走。 02

人工智能制造業(yè)應用場景

從應用層面來看,一項人工智能技術的應用可能會包含計算智能、感知智能等多個層次的核心能力。工業(yè)機器人、智能手機、無人駕駛汽車、無人機等智能產品,本身就是人工智能的載體,其硬件與各類軟件結合具備感知、判斷的能力并實時與用戶、環(huán)境互動,無不是綜合了多種人工智能的核心能力。

例如,在制造業(yè)中被廣泛應用的各種智能機器人:分揀/揀選機器人,能夠自動識別并抓取不規(guī)則的物體;協(xié)作機器人能夠理解并對周圍環(huán)境做出反應;自動跟隨物料小車能夠通過人臉識別實現(xiàn)自動跟隨;借助SLAM(simultaneous localization and mapping,同步定位與地圖構建)技術,自主移動機器人可以利用自身攜帶的傳感器識別未知環(huán)境中的特征標志,然后根據(jù)機器人與特征標志之間的相對位置和里程計的讀數(shù)估計機器人和特征標志的全局坐標。無人駕駛技術在定位、環(huán)境感知、路徑規(guī)劃、行為決策與控制方面,也綜合應用了多種人工智能技術與算法。 目前制造企業(yè)中應用的人工智能技術,主要圍繞在智能語音交互產品、人臉識別、圖像識別、圖像搜索、聲紋識別、文字識別、機器翻譯、機器學習、大數(shù)據(jù)計算、數(shù)據(jù)可視化等方面。下文則總結制造業(yè)中常用的八大人工智能應用場景。

場景一:智能分揀

制造業(yè)上有許多需要分撿的作業(yè),如果采用人工的作業(yè),速度緩慢且成本高,而且還需要提供適宜的工作溫度環(huán)境。如果采用工業(yè)機器人進行智能分揀,可以大幅減低成本,提高速度。 以分揀零件為例。需要分撿的零件通常并沒有被整齊擺放,機器人雖然有攝像頭可以看到零件,但卻不知道如何把零件成功地撿起來。在這種情況下,利用機器學習技術,先讓機器人隨機進行一次分撿動作,然后告訴它這次動作是成功分撿到零件還是抓空了,經過多次訓練之后,機器人就會知道按照怎樣的順序來分撿才有更高的成功率;分撿時夾哪個位置會有更高的撿起成功率;知道按照怎樣的順序分撿,成功率會更高。經過幾個小時的學習,機器人的分撿成功率可以達到90%,和熟練工人的水平相當。

場景二:設備健康管理

基于對設備運行數(shù)據(jù)的實時監(jiān)測,利用特征分析和機器學習技術,一方面可以在事故發(fā)生前進行設備的故障預測,減少非計劃性停機。另一方面,面對設備的突發(fā)故障,能夠迅速進行故障診斷,定位故障原因并提供相應的解決方案。在制造行業(yè)應用較為常見,特別是化工、重型設備、五金加工、3C制造、風電等行業(yè)。

數(shù)控機床為例,用機器學習算法模型和智能傳感器等技術手段監(jiān)測加工過程中的切削刀、主軸和進給電機的功率、電流、電壓等信息,辯識出刀具的受力、磨損、破損狀態(tài)及機床加工的穩(wěn)定性狀態(tài),并根據(jù)這些狀態(tài)實時調整加工參數(shù)(主軸轉速、進給速度)和加工指令,預判何時需要換刀,以提高加工精度、縮短產線停工時間并提高設備運行的安全性。

adbe87ea-45ee-11eb-8b86-12bb97331649.jpg

圖1 基于深度學習的刀具磨損狀態(tài)預測 (來源:華中科技大學 李斌教授)

場景三:基于視覺的表面缺陷檢測

基于機器視覺的表面缺陷檢測應用在制造業(yè)已經較為常見。利用機器視覺可以在環(huán)境頻繁變化的條件下,以毫秒為單位快速識別出產品表面更微小、更復雜的產品缺陷,并進行分類,如檢測產品表面是否有污染物、表面損傷、裂縫等。目前已有工業(yè)智能企業(yè)將深度學習與3D顯微鏡結合,將缺陷檢測精度提高到納米級。對于檢測出的有缺陷的產品,系統(tǒng)可以自動做可修復判定,并規(guī)劃修復路徑及方法,再由設備執(zhí)行修復動作。

例如,PVC管材是最常用的建筑材料之一,消耗量巨大,在生產包裝過程中容易存在表面劃傷、凹坑,水紋,麻面等諸多類型的缺陷,消耗大量的人力進行檢測。采用了表面缺陷視覺自動檢測后,通過面積、尺寸最小值、最大值設定,自動進行管材表面雜質檢測,最小檢測精度為0.15mm2,檢出率大于99%;通過劃傷長度、寬度的最小值、最大值設定,自動進行管材表面劃傷檢測,最小檢測精度為0.06mm,檢出率大于99%;通過褶皺長度、寬度的最小值、最大值、片段長度、色差閾值設定,自動進行管材表面褶皺檢測,最小檢測精度為10mm,檢出率大于95%。

圖2 PVC管材表面褶皺檢測(來源:維視智造)

場景四:基于聲紋的產品質量檢測與故障判斷

利用聲紋識別技術實現(xiàn)異音的自動檢測,發(fā)現(xiàn)不良品,并比對聲紋數(shù)據(jù)庫進行故障判斷。例如,從2018年年末開始,佛吉亞(無錫)工廠就與集團大數(shù)據(jù)科學家團隊展開全面合作,致力于將AI技術應用于座椅調角器的NVH性能評判(震動噪聲測試)。2019年,佛吉亞(無錫)工廠將AI技術應用到調角器異音檢測中,實現(xiàn)從信號采集、數(shù)據(jù)存儲、數(shù)據(jù)分析到自我學習全過程的自動化,檢測效率及準確性遠超傳統(tǒng)人工檢測。隨著基于AI(人工智能)技術的噪聲檢測系統(tǒng)在無錫工廠投入應用,人員數(shù)量已經從38人下降至3人,同時,質量控制能力顯著提高,年經濟效益高達450萬人民幣。

場景五:智能決策

制造企業(yè)在產品質量、運營管理、能耗管理和刀具管理等方面,可以應用機器學習等人工智能技術,結合大數(shù)據(jù)分析,優(yōu)化調度方式,提升企業(yè)決策能力。

例如,一汽解放無錫柴油機廠的智能生產管理系統(tǒng),具有異常和生產調度數(shù)據(jù)采集、基于決策樹的異常原因診斷、基于回歸分析的設備停機時間預測、基于機器學習的調度決策優(yōu)化等功能。通過將歷史調度決策過程數(shù)據(jù)和調度執(zhí)行后的實際生產性能指標作為訓練數(shù)據(jù)集,采用神經網絡算法,對調度決策評價算法的參數(shù)進行調優(yōu),保證調度決策符合生產實際需求。

場景六:數(shù)字孿生

數(shù)字孿生是客觀事物在虛擬世界的鏡像。創(chuàng)建數(shù)字孿生的過程,集成了人工智能、機器學習和傳感器數(shù)據(jù),以建立一個可以實時更新的、現(xiàn)場感極強的“真實”模型,用來支撐物理產品生命周期各項活動的決策。在完成對數(shù)字孿生對象的降階建模方面,可以把復雜性和非線性模型放到神經網絡中,借助深度學習建立一個有限的目標,基于這個有限的目標,進行降階建模。 例如,在傳統(tǒng)模式下,一個冷熱水管的出水口流體及熱仿真,用16核的服務器每次運算需要57個小時,進行降階建模之后每次運算只需要幾分鐘。

場景七:創(chuàng)成式設計

創(chuàng)成式設計(Generative Design)是一個人機交互、自我創(chuàng)新的過程。工程師在進行產品設計時,只需要在系統(tǒng)指引下,設置期望的參數(shù)及性能等約束條件,如材料、重量、體積等等,結合人工智能算法,就能根據(jù)設計者的意圖自動生成成百上千種可行性方案,然后自行進行綜合對比,篩選出最優(yōu)的設計方案推送給設計者進行最后的決策。

創(chuàng)成式設計已經成為一個新的交叉學科,與計算機和人工智能技術進行深度結合,將先進的算法和技術應用到設計中來。得到廣泛應用的創(chuàng)成式算法包括:參數(shù)化系統(tǒng)、形狀語法(Shape Grammars(SG))、L-系統(tǒng)(L-systems)、元胞自動機(Cellular Automata(CA))、拓撲優(yōu)化算法、進化系統(tǒng)和遺傳算法等。

圖3 輪輻的創(chuàng)成式設計(來源:安世亞太)

場景八:需求預測,供應鏈優(yōu)化

以人工智能技術為基礎,建立精準的需求預測模型,實現(xiàn)企業(yè)的銷量預測、維修備料預測,做出以需求導向的決策。同時,通過對外部數(shù)據(jù)的分析,基于需求預測,制定庫存補貨策略,以及供應商評估、零部件選型等。

例如,為了務實控制生產管理成本,美國本田公司希望能夠掌握客戶未來的需求會在何時發(fā)生,因此將1200個經銷商的客戶銷售與維修資料建立預測模型,推算未來幾年內車輛回到經銷商維修的數(shù)量,這些資訊進一步轉為各項零件預先準備的指標。該轉變讓美國本田已做到預測準確度高達99%,并降低3倍的客訴時間。 03

結語

目前,隨著越來越多的企業(yè)、高校、開源組織進入人工智能領域,大批成功的人工智能開源軟件和平臺不斷涌入,人工智能迎來前所未有的爆發(fā)期。但與金融等行業(yè)相比,雖然人工智能在制造業(yè)的應用場景不少,卻并不突出,甚至可以說發(fā)展較慢。 究其原因,主要源于以下三大方面:

一是,由于制造環(huán)節(jié)數(shù)據(jù)的采集、利用、開發(fā)都有較大難度,加之企業(yè)的數(shù)據(jù)庫也以私有為主、數(shù)據(jù)規(guī)模有限,缺乏優(yōu)質的機器學習樣本,制約了機器的自主學習過程。

二是,不同的制造行業(yè)之間存在差異,對于人工智能解決方案的復雜性和定制化要求高。

三是,不同的行業(yè)內缺乏能夠引領人工智能與制造業(yè)深度融合發(fā)展趨勢的龍頭企業(yè)。

解決以上三大問題,人工智能技術才能更好地應用于制造業(yè)。

責任編輯:lq

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 制造業(yè)
    +關注

    關注

    9

    文章

    2310

    瀏覽量

    54377
  • 人工智能
    +關注

    關注

    1804

    文章

    48750

    瀏覽量

    246697
  • 智能制造
    +關注

    關注

    48

    文章

    5840

    瀏覽量

    77484

原文標題:制造業(yè)人工智能8大應用場景!

文章出處:【微信號:mfg2025,微信公眾號:智能制造】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦
    熱點推薦

    廣電計量出席人工智能賦能先進制造業(yè)技術論壇

    ,人工智能技術可通過多模態(tài)數(shù)據(jù)融合與深度學習算法,突破傳統(tǒng)檢測瓶頸,推動“制造”向“智造”躍遷,成為發(fā)展先進制造業(yè)的重要智力支撐。
    的頭像 發(fā)表于 04-18 10:39 ?324次閱讀

    AI和ML如何重塑電子制造業(yè)

    隨著工業(yè)4.0的到來,人工智能(AI)和機器學習(ML)不僅僅是流行詞,它們正在重塑制造業(yè)。這場科技的浪潮,特別在電子制造領域,帶來了令人驚嘆的突破和機遇。在以數(shù)據(jù)驅動決策,以人為本理念的推動下,先進的
    的頭像 發(fā)表于 04-17 14:49 ?303次閱讀

    AI新動能 智造新生態(tài)丨人工智能賦能先進制造業(yè)技術論壇報名啟動!

    粵港澳大灣區(qū)制造業(yè)產業(yè)基礎雄厚,涉及電子信息、機械、軌道交通、新能源汽車等多個萬億級產業(yè)集群。近年來,大灣區(qū)堅持以智能制造為主攻方向,在人工智能等新技術驅動下,推進
    發(fā)表于 04-08 15:00 ?165次閱讀
    AI新動能 智造新生態(tài)丨<b class='flag-5'>人工智能</b>賦能先進<b class='flag-5'>制造業(yè)</b>技術論壇報名啟動!

    MES系統(tǒng):加速制造業(yè)數(shù)字化轉型的驅動力

    隨著5G、人工智能、物聯(lián)網等技術的不斷成熟和應用,MES系統(tǒng)也將不斷進化和發(fā)展。未來的MES系統(tǒng)將更加智能化、集成化和定制化,能夠更好地滿足制造業(yè)多樣化的需求,推動制造業(yè)向更加高效、靈
    的頭像 發(fā)表于 02-13 11:08 ?287次閱讀

    偉立機器人入選2024年浙江省人工智能用場景名單

    偉立機器人自主研發(fā)的《面向柔性制造人工智能用場景(DFMS數(shù)字化柔性制造系統(tǒng))》憑借其技術創(chuàng)新與場景應用價值,成功入選2024年浙江省
    的頭像 發(fā)表于 02-07 15:23 ?703次閱讀

    智能工廠 VS 傳統(tǒng)工廠:制造業(yè)的“新舊對決”

    制造業(yè)中,傳統(tǒng)工廠與智能工廠并存。傳統(tǒng)工廠依賴人工操作,生產模式為勞動密集型;智能工廠深度融合人工智能、物聯(lián)網、大數(shù)據(jù)等前沿科技,生產模式
    的頭像 發(fā)表于 12-31 10:04 ?741次閱讀
    <b class='flag-5'>智能</b>工廠 VS 傳統(tǒng)工廠:<b class='flag-5'>制造業(yè)</b>的“新舊對決”

    嵌入式和人工智能究竟是什么關系?

    用場景。例如,在智能家居領域,嵌入式系統(tǒng)可以控制各種智能設備,如智能燈泡、智能空調等,而人工智能
    發(fā)表于 11-14 16:39

    生成式AI在制造業(yè)的應用現(xiàn)狀和前景展望

    在上一期《IBM 企業(yè)級 AI 為跨國制造業(yè)智能化注入新動力》的文章中,我們重點分享了 IBM 企業(yè)級AI驅動智能制造升級的若干場景,視覺檢
    的頭像 發(fā)表于 11-06 17:06 ?1336次閱讀

    《AI for Science:人工智能驅動科學創(chuàng)新》第6章人AI與能源科學讀后感

    不僅提高了能源的生產效率和管理水平,還為未來的可持續(xù)發(fā)展提供了有力保障。隨著技術的不斷進步和應用場景的不斷拓展,人工智能將在能源科學領域發(fā)揮更加重要的作用。 總結 《AI for Science:人工智能
    發(fā)表于 10-14 09:27

    《AI for Science:人工智能驅動科學創(chuàng)新》第一章人工智能驅動的科學創(chuàng)新學習心得

    。 5. 展望未來 最后,第一章讓我對人工智能驅動的科學創(chuàng)新未來充滿了期待。隨著技術的不斷進步和應用場景的拓展,AI將在更多領域發(fā)揮關鍵作用,從基礎科學到應用科學,從理論研究到實踐應用,都將迎來前所未有
    發(fā)表于 10-14 09:12

    制造業(yè)人工智能場景應用落地現(xiàn)狀、難點和建議

    制造業(yè)應用人工智能可以提高制造業(yè)的生產效率,推動制造業(yè)高質量發(fā)展和競爭力提升,促進國民經濟的持續(xù)穩(wěn)定增長。近年來,制造業(yè)
    的頭像 發(fā)表于 10-12 09:49 ?854次閱讀

    risc-v在人工智能圖像處理應用前景分析

    和使用該技術,無需支付專利費或使用費。這大大降低了人工智能圖像處理技術的研發(fā)成本,并吸引了大量的開發(fā)者、企業(yè)和研究機構參與其生態(tài)建設。 靈活性則體現(xiàn)在RISC-V可以根據(jù)不同的應用場景進行定制和優(yōu)化,從而
    發(fā)表于 09-28 11:00

    名單公布!【書籍評測活動NO.44】AI for Science:人工智能驅動科學創(chuàng)新

    芯片設計的自動化水平、優(yōu)化半導體制造和封測的工藝和水平、尋找新一代半導體材料等方面提供幫助。 第6章介紹了人工智能在化石能源科學研究、可再生能源科學研究、能源轉型三個方面的落地應用。 第7章從環(huán)境監(jiān)測
    發(fā)表于 09-09 13:54

    RISC-V適合什么樣的應用場景

    設計的理想工具,有助于培養(yǎng)更多的計算機專業(yè)人才。 綜上所述,RISC-V適合的應用場景非常廣泛,包括物聯(lián)網、嵌入式系統(tǒng)、人工智能、自動駕駛、汽車電子、數(shù)據(jù)中心和云計算以及教育和研究等多個領域。隨著RISC-V生態(tài)系統(tǒng)的不斷完善和技術的不斷進步,相信RISC-V將在更多領域
    發(fā)表于 07-29 17:16

    FPGA在人工智能中的應用有哪些?

    定制化的硬件設計,提高了硬件的靈活性和適應性。 綜上所述,F(xiàn)PGA在人工智能領域的應用前景廣闊,不僅可以用于深度學習的加速和云計算的加速,還可以針對特定應用場景進行定制化計算,為人工智能技術的發(fā)展提供有力支持。
    發(fā)表于 07-29 17:05