女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

清華大學(xué)聯(lián)合提出了用于半監(jiān)督學(xué)習(xí)的圖隨機(jī)神經(jīng)網(wǎng)絡(luò)

ss ? 來(lái)源:學(xué)術(shù)頭條 ? 作者:學(xué)術(shù)頭條 ? 2020-12-01 15:25 ? 次閱讀

導(dǎo)讀:在 NeurIPS 2020 上,清華大學(xué)聯(lián)合微眾銀行、微軟研究院以及博世人工智能中心提出了 Graph Random Neural Network (GRAND),一種用于圖半監(jiān)督學(xué)習(xí)的新型圖神經(jīng)網(wǎng)絡(luò)框架。在模型架構(gòu)上,GRAND 提出了一種簡(jiǎn)單有效的圖數(shù)據(jù)增強(qiáng)方法 Random Propagation,用來(lái)增強(qiáng)模型魯棒性及減輕過(guò)平滑?;?Random Propagation,GRAND 在優(yōu)化過(guò)程中使用一致性正則(Consistency Regularization)來(lái)增強(qiáng)模型的泛化性,即除了優(yōu)化標(biāo)簽節(jié)點(diǎn)的 cross-entropy loss 之外,還會(huì)優(yōu)化模型在無(wú)標(biāo)簽節(jié)點(diǎn)的多次數(shù)據(jù)增強(qiáng)的預(yù)測(cè)一致性。GRAND 不僅在理論上有良好的解釋,還在三個(gè)公開(kāi)數(shù)據(jù)集上超越了 14 種不同的 GNN 模型,取得了 SOTA 的效果。

這項(xiàng)研究被收入為 NeurIPS 2020 的 Oral paper (105/9454)。

論文名稱:GraphRandom Neural Network for Semi-Supervised Learning on Graphs

研究背景

圖是用于建模結(jié)構(gòu)化和關(guān)系數(shù)據(jù)的一種通用的數(shù)據(jù)結(jié)構(gòu)。在這項(xiàng)工作中,我們重點(diǎn)研究基于圖的半監(jiān)督學(xué)習(xí)問(wèn)題,這個(gè)問(wèn)題的輸入是一個(gè)節(jié)點(diǎn)帶屬性的無(wú)向圖,其中只有一小部分節(jié)點(diǎn)有標(biāo)簽,我們的目的是要根據(jù)節(jié)點(diǎn)屬性,圖的結(jié)構(gòu)去預(yù)測(cè)無(wú)標(biāo)簽節(jié)點(diǎn)的標(biāo)簽。近幾年來(lái),解決這個(gè)問(wèn)題一類有效的方法是以圖卷積神經(jīng)網(wǎng)絡(luò)(GCN)[1]為代表的圖神經(jīng)網(wǎng)絡(luò)模型(GNN)。其主要思想是通過(guò)一個(gè)確定性的特征傳播來(lái)聚合鄰居節(jié)點(diǎn)的信息,以此來(lái)達(dá)到對(duì)特征降噪的目的。

但是,最近的研究表明,這種傳播過(guò)程會(huì)帶來(lái)一些固有的問(wèn)題,例如:

1) 過(guò)平滑,圖卷積可以看做是一種特殊形式的拉普拉斯平滑,疊加多層之后節(jié)點(diǎn)之間的feature就會(huì)變得不可區(qū)分。

2)欠魯棒,GNN中的特征傳播會(huì)使得節(jié)點(diǎn)的預(yù)測(cè)嚴(yán)重依賴于特定的鄰居節(jié)點(diǎn),這樣的模型對(duì)噪音的容忍度會(huì)很差,例如KDD’18的best paper[2]就表明我們甚至可以通過(guò)間接攻擊的方式通過(guò)改變目標(biāo)節(jié)點(diǎn)鄰居的屬性來(lái)達(dá)到攻擊目標(biāo)節(jié)點(diǎn)的目的。

3)過(guò)擬合,在半監(jiān)督節(jié)點(diǎn)分類的任務(wù)中,有標(biāo)簽的節(jié)點(diǎn)很少,而一般GNN僅僅依靠這些少量的監(jiān)督信息做訓(xùn)練,這樣訓(xùn)練出來(lái)的模型泛化能力會(huì)比較差。

模型介紹

為了解決這些問(wèn)題,在這個(gè)工作中我們提出了圖隨機(jī)神經(jīng)網(wǎng)絡(luò)(GRAND),一種簡(jiǎn)單有效的圖半監(jiān)督學(xué)習(xí)方法。與傳統(tǒng)GNN不同,GRAND采用隨機(jī)傳播(Random Propagation)策略。具體來(lái)說(shuō),我們首先隨機(jī)丟棄一些節(jié)點(diǎn)的屬性對(duì)節(jié)點(diǎn)特征做一個(gè)隨機(jī)擾動(dòng),然后對(duì)擾動(dòng)后的節(jié)點(diǎn)特征做一個(gè)高階傳播。這樣一來(lái),每個(gè)節(jié)點(diǎn)的特征就會(huì)隨機(jī)地與其高階鄰居的特征進(jìn)交互,這種策略會(huì)降低節(jié)點(diǎn)對(duì)某些特定節(jié)點(diǎn)的依賴,提升模型的魯棒性。

除此之外,在同質(zhì)圖中,相鄰的節(jié)點(diǎn)往往具有相似的特征及標(biāo)簽,這樣節(jié)點(diǎn)丟棄的信息就可以被其鄰居的信息補(bǔ)償過(guò)來(lái)。因此這樣形成的節(jié)點(diǎn)特征就可以看成是一種針對(duì)圖數(shù)據(jù)的數(shù)據(jù)增強(qiáng)方法。基于這種傳播方法,我們進(jìn)而設(shè)計(jì)了基于一致性正則(consistency regularization)的訓(xùn)練方法,即每次訓(xùn)練時(shí)進(jìn)行多次Random Propagation 生成多個(gè)不同的節(jié)點(diǎn)增強(qiáng)表示,然后將這些增強(qiáng)表示輸入到一個(gè)MLP中,除了優(yōu)化交叉熵?fù)p失之外,我們還會(huì)去優(yōu)化MLP模型對(duì)多個(gè)數(shù)據(jù)增強(qiáng)產(chǎn)生預(yù)測(cè)結(jié)果的一致性。這種一致性正則損失無(wú)需標(biāo)簽,可以使模型利用充足的無(wú)標(biāo)簽數(shù)據(jù),以彌補(bǔ)半監(jiān)督任務(wù)中監(jiān)督信息少的不足,提升模型的泛化能力,減小過(guò)擬合的風(fēng)險(xiǎn)。

圖一

圖二

我們對(duì)GRAND進(jìn)行了理論分析,分析結(jié)果表明,這種Random propagation + Consistency Regularization 的訓(xùn)練方式實(shí)際上是在優(yōu)化模型對(duì)節(jié)點(diǎn)與其鄰居節(jié)點(diǎn)預(yù)測(cè)置信度之間的一致性。

實(shí)驗(yàn)結(jié)果

我們?cè)贕NN基準(zhǔn)數(shù)據(jù)集中的實(shí)驗(yàn)結(jié)果對(duì)GRAND進(jìn)行了評(píng)測(cè),實(shí)驗(yàn)結(jié)果顯示GRAND在3個(gè)公開(kāi)數(shù)據(jù)集中顯著超越了14種不同種類的GNN模型,取得了SOTA的效果。實(shí)驗(yàn)結(jié)果(圖三):

圖三

此外我們還對(duì)模型泛化性,魯棒性,過(guò)平滑等問(wèn)題進(jìn)行了分析,實(shí)驗(yàn)結(jié)果顯示1)Consistency Regularization 和Random Propagation均能提升模型的泛化能力(圖四);2)GRAND具有更好的對(duì)抗魯棒性(圖五);3)GRAND可以減輕過(guò)平滑問(wèn)題(圖六)。

圖四

圖五

圖六

責(zé)任編輯:xj

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    使用MATLAB進(jìn)行無(wú)監(jiān)督學(xué)習(xí)

    無(wú)監(jiān)督學(xué)習(xí)是一種根據(jù)未標(biāo)注數(shù)據(jù)進(jìn)行推斷的機(jī)器學(xué)習(xí)方法。無(wú)監(jiān)督學(xué)習(xí)旨在識(shí)別數(shù)據(jù)中隱藏的模式和關(guān)系,無(wú)需任何監(jiān)督或關(guān)于結(jié)果的先驗(yàn)知識(shí)。
    的頭像 發(fā)表于 05-16 14:48 ?543次閱讀
    使用MATLAB進(jìn)行無(wú)<b class='flag-5'>監(jiān)督學(xué)習(xí)</b>

    清華大學(xué)攜手華為打造業(yè)內(nèi)首個(gè)園區(qū)網(wǎng)絡(luò)智能體

    清華大學(xué)響應(yīng)國(guó)家教育新基建戰(zhàn)略,正在加速推進(jìn)網(wǎng)絡(luò)管理平臺(tái)升級(jí):為滿足在線教育、協(xié)同創(chuàng)新及智慧校園的發(fā)展需求,為清華大學(xué)躋身世界一流大學(xué)創(chuàng)造基礎(chǔ)條件,
    的頭像 發(fā)表于 05-07 09:51 ?202次閱讀

    2025年開(kāi)放原子校源行清華大學(xué)站成功舉辦

    近日,由開(kāi)放原子開(kāi)源基金會(huì)、清華大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)系、清華大學(xué)軟件學(xué)院主辦的開(kāi)放原子“校源行”(清華站)在清華大學(xué)成功舉辦。
    的頭像 發(fā)表于 04-22 16:46 ?255次閱讀

    清華大學(xué)與華為啟動(dòng)“卓越中心”專項(xiàng)合作

    近日,清華大學(xué)與華為技術(shù)有限公司在清華大學(xué)自強(qiáng)科技樓正式簽署合作協(xié)議,共同宣布“清華大學(xué)鯤鵬昇騰科教創(chuàng)新卓越中心專項(xiàng)合作”(簡(jiǎn)稱“卓越中心”)正式啟動(dòng)。 出席簽約儀式的有清華大學(xué)副校長(zhǎng)
    的頭像 發(fā)表于 02-18 14:11 ?546次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對(duì)它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Ba
    的頭像 發(fā)表于 02-12 15:15 ?697次閱讀

    清華大學(xué)師生到訪智行者科技交流學(xué)習(xí)

    近日,清華大學(xué) “技術(shù)創(chuàng)新原理與實(shí)踐” 研究生課程師生一行到訪智行者進(jìn)行交流學(xué)習(xí)。作為課程實(shí)踐環(huán)節(jié)的重要一站,此次來(lái)訪開(kāi)啟了一場(chǎng)深度的參觀學(xué)習(xí)之旅。智行者董事長(zhǎng)&CEO張德兆先生作為清華
    的頭像 發(fā)表于 12-23 11:39 ?655次閱讀

    博世與清華大學(xué)續(xù)簽人工智能研究合作協(xié)議

    近日,博世與清華大學(xué)宣布,雙方續(xù)簽人工智能領(lǐng)域的研究合作協(xié)議,為期五年。在此期間,博世將投入5000萬(wàn)元人民幣。基于2020年成立的清華大學(xué)—博世機(jī)器學(xué)習(xí)聯(lián)合研究中心(以下簡(jiǎn)稱“
    的頭像 發(fā)表于 11-20 11:37 ?657次閱讀

    【《大語(yǔ)言模型應(yīng)用指南》閱讀體驗(yàn)】+ 基礎(chǔ)篇

    章節(jié)最后總結(jié)了機(jī)器學(xué)習(xí)的分類:有監(jiān)督學(xué)習(xí)、無(wú)監(jiān)督學(xué)習(xí)監(jiān)督學(xué)習(xí)、自監(jiān)督學(xué)習(xí)和強(qiáng)化
    發(fā)表于 07-25 14:33

    BP神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)機(jī)制

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network),即反向傳播神經(jīng)網(wǎng)絡(luò),是一種基于梯度下降算法的多層前饋神經(jīng)網(wǎng)絡(luò),其學(xué)習(xí)機(jī)制的核心在于通過(guò)反向傳播算法
    的頭像 發(fā)表于 07-10 15:49 ?1056次閱讀

    神經(jīng)網(wǎng)絡(luò)如何用無(wú)監(jiān)督算法訓(xùn)練

    神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習(xí)的重要組成部分,其訓(xùn)練方式多樣,其中無(wú)監(jiān)督學(xué)習(xí)是一種重要的訓(xùn)練策略。無(wú)監(jiān)督學(xué)習(xí)旨在從未標(biāo)記的數(shù)據(jù)中發(fā)現(xiàn)數(shù)據(jù)內(nèi)在的結(jié)構(gòu)、模式或規(guī)律,從而提取有用的特征表示。這種訓(xùn)練方
    的頭像 發(fā)表于 07-09 18:06 ?1350次閱讀

    前饋神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)和常見(jiàn)激活函數(shù)

    和激活函數(shù)的非線性變換,能夠學(xué)習(xí)和模擬復(fù)雜的函數(shù)映射,從而解決各種監(jiān)督學(xué)習(xí)任務(wù)。本文將詳細(xì)闡述前饋神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu),包括其組成層、權(quán)重和偏置、激活函數(shù)等,并介紹幾種常見(jiàn)的激活函數(shù)及其特性。
    的頭像 發(fā)表于 07-09 10:31 ?1620次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與循環(huán)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    在深度學(xué)習(xí)領(lǐng)域,卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNN)和循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Networks, RNN)是兩種極其重要
    的頭像 發(fā)表于 07-03 16:12 ?5269次閱讀

    反向傳播神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)在許多領(lǐng)域都有廣泛的應(yīng)用,如語(yǔ)音識(shí)別、圖像識(shí)別、自然語(yǔ)言處理等。然而,BP神經(jīng)網(wǎng)絡(luò)也存在一些問(wèn)題,如容易陷入局部最優(yōu)解、訓(xùn)練時(shí)間長(zhǎng)、對(duì)初始權(quán)重敏感等。為了解決這些問(wèn)題,研究者們提出了一些改進(jìn)的BP
    的頭像 發(fā)表于 07-03 11:00 ?1135次閱讀

    神經(jīng)網(wǎng)絡(luò)反向傳播算法原理是什么

    神經(jīng)網(wǎng)絡(luò)反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練多層前饋神經(jīng)網(wǎng)絡(luò)監(jiān)督學(xué)習(xí)算法。它通過(guò)最小化損失函數(shù)來(lái)調(diào)整網(wǎng)
    的頭像 發(fā)表于 07-02 14:16 ?1191次閱讀

    神經(jīng)網(wǎng)絡(luò)架構(gòu)有哪些

    神經(jīng)網(wǎng)絡(luò)架構(gòu)是機(jī)器學(xué)習(xí)領(lǐng)域中的核心組成部分,它們模仿了生物神經(jīng)網(wǎng)絡(luò)的運(yùn)作方式,通過(guò)復(fù)雜的網(wǎng)絡(luò)結(jié)構(gòu)實(shí)現(xiàn)信息的處理、存儲(chǔ)和傳遞。隨著深度學(xué)習(xí)技術(shù)
    的頭像 發(fā)表于 07-01 14:16 ?1378次閱讀