女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

目標檢測和圖像分割之間的區別

新機器視覺 ? 來源:AI研習社 ? 作者:AI研習社 ? 2020-11-03 10:03 ? 次閱讀

計算機視覺

圖像檢測和圖像分割有什么區別?

人工智能對于圖像處理有不同的任務。在本文中,我將介紹目標檢測和圖像分割之間的區別。

在這兩個任務中,我們都希望找到圖像中某些感興趣的項目的位置。例如,我們可以有一組安全攝像頭照片,在每張照片上,我們想要識別照片中所有人的位置。

通常有兩種方法可以用于此:目標檢測(Object Detection)和圖像分割(Image Segmentation)。

目標檢測-預測包圍盒

當我們說到物體檢測時,我們通常會說到邊界盒。這意味著我們的圖像處理將在我們的圖片中識別每個人周圍的矩形。

邊框通常由左上角的位置(2 個坐標)和寬度和高度(以像素為單位)定義。

來自開放圖像數據集的注釋圖像。家庭堆雪人,來自 mwvchamber。在CC BY 2.0許可下使用的圖像。

如何理解目標檢測
如果我們回到任務:識別圖片上的所有人,則可以理解通過邊界框進行對象檢測的邏輯。
我們首先想到的解決方案是將圖像切成小塊,然后在每個子圖像上應用圖像分類,以區別該圖像是否是人類。對單個圖像進行分類是一項較容易的任務,并且是對象檢測的一項,因此,他們采用了這種分步方法。
當前,YOLO模型(You Only Look Once)是解決此問題的偉大發明。YOLO模型的開發人員已經構建了一個神經網絡,該神經網絡能夠立即執行整個邊界框方法!
當前用于目標檢測的最佳模型
YOLO
Faster RCNN

目標分割-預測掩模

一步一步地掃描圖像的邏輯替代方法是遠離畫框,而是逐像素地注釋圖像。

如果你這樣做,你將會有一個更詳細的模型,它基本上是輸入圖像的一個轉換。

來自開放圖像數據集的注釋圖像。家庭堆雪人,來自 mwvchamber。在CC BY 2.0許可下使用的圖像。

如何理解圖像分割
這個想法很基本:即使在掃描產品上的條形碼時,也可以應用一種算法來轉換輸入信息(通過應用各種過濾器),這樣,除了條形碼序列以外的所有信息在最終圖像中都不可見。


這是在圖像上定位條形碼的基本方法,但與在圖像分割中所發生的情況類似。
圖像分割的返回格式稱為掩碼:與原始圖像大小相同的圖像,但是對于每個像素,它只有一個布爾值來指示對象是否存在。
如果我們允許多個類別,它就會變得更加復雜:例如,它可以將一個海灘景觀分為三類:空氣、海洋和沙子。
當下圖像分割的最佳模型
Mask RCNN
Unet
Segnet

比較總結

對象檢測
輸入是一個矩陣(輸入圖像),每個像素有 3 個值(紅、綠、藍),如果是黑色和白色,則每個像素有 1 個值
輸出是由左上角和大小定義的邊框列表
圖像分割
輸入是一個矩陣(輸入圖像),每個像素有 3 個值(紅、綠、藍),如果是黑色和白色,則每個像素有 1 個值
輸出是一個矩陣(掩模圖像),每個像素有一個包含指定類別的值

責任編輯:lq

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 圖像處理
    +關注

    關注

    27

    文章

    1325

    瀏覽量

    57727
  • 圖像分割
    +關注

    關注

    4

    文章

    182

    瀏覽量

    18258
  • 圖像檢測
    +關注

    關注

    0

    文章

    35

    瀏覽量

    12016

原文標題:計算機視覺:圖像檢測和圖像分割有什么區別?

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦
    熱點推薦

    labview調用yolo目標檢測分割、分類、obb

    labview調用yolo目標檢測、分割、分類、obb、pose深度學習,支持CPU和GPU推理,32/64位labview均可使用。 (yolov5~yolov12)
    發表于 03-31 16:28

    圖像語義分割的實用性是什么

    什么是圖像語義分割 圖像語義分割是一種將圖像中的所有像素點按照其語義類別進行分類的任務。與傳統的圖像
    的頭像 發表于 07-17 09:56 ?816次閱讀

    圖像分割和語義分割區別與聯系

    、亮度等。圖像分割的目的是將圖像中感興趣的部分與背景分離,以便進行進一步的處理和分析。 1.1 圖像分割的類型
    的頭像 發表于 07-17 09:55 ?1749次閱讀

    圖像分割目標檢測區別是什么

    區別。 定義 圖像分割是將圖像劃分為若干個區域或對象的過程,這些區域或對象具有相似的屬性,如顏色、紋理或形狀。圖像
    的頭像 發表于 07-17 09:53 ?2217次閱讀

    目標檢測圖像識別的區別在哪

    目標檢測圖像識別是計算機視覺領域中的兩個重要研究方向,它們在實際應用中有著廣泛的應用,如自動駕駛、智能監控、醫療診斷等。盡管它們在某些方面有相似之處,但它們之間存在一些關鍵的
    的頭像 發表于 07-17 09:51 ?1629次閱讀

    目標檢測與識別技術有哪些

    目標檢測與識別技術是計算機視覺領域的重要研究方向,廣泛應用于安全監控、自動駕駛、醫療診斷、工業自動化等領域。 目標檢測與識別技術的基本概念 目標
    的頭像 發表于 07-17 09:40 ?1206次閱讀

    目標檢測與識別技術的關系是什么

    目標檢測與識別技術是計算機視覺領域的兩個重要研究方向,它們之間存在著密切的聯系和相互依賴的關系。 一、目標檢測與識別技術的概念
    的頭像 發表于 07-17 09:38 ?1143次閱讀

    圖像檢測圖像識別的原理、方法及應用場景

    圖像檢測圖像識別是計算機視覺領域的兩個重要概念,它們在許多應用場景中發揮著關鍵作用。 1. 定義 1.1 圖像檢測
    的頭像 發表于 07-16 11:19 ?6602次閱讀

    圖像分割與語義分割中的CNN模型綜述

    圖像分割與語義分割是計算機視覺領域的重要任務,旨在將圖像劃分為多個具有特定語義含義的區域或對象。卷積神經網絡(CNN)作為深度學習的一種核心模型,在
    的頭像 發表于 07-09 11:51 ?1771次閱讀

    機器人視覺技術中常見的圖像分割方法

    機器人視覺技術中的圖像分割方法是一個廣泛且深入的研究領域。圖像分割是將圖像劃分為多個區域或對象的過程,這些區域或對象具有某種共同的特征,如顏
    的頭像 發表于 07-09 09:31 ?1259次閱讀

    基于深度學習的小目標檢測

    在計算機視覺領域,目標檢測一直是研究的熱點和難點之一。特別是在小目標檢測方面,由于小目標圖像
    的頭像 發表于 07-04 17:25 ?1903次閱讀

    機器人視覺技術中圖像分割方法有哪些

    機器人視覺技術是人工智能領域的一個重要分支,它涉及到圖像處理、模式識別、機器學習等多個學科。圖像分割是機器人視覺技術中的一個重要環節,它的目標是從一幅
    的頭像 發表于 07-04 11:34 ?1569次閱讀

    人臉檢測和人臉識別的區別是什么

    人臉檢測和人臉識別是計算機視覺領域的兩個重要技術,它們在許多應用場景中都有廣泛的應用,如安全監控、身份驗證、社交媒體等。盡管它們在某些方面有相似之處,但它們之間存在一些關鍵的區別。本文將詳細介紹人
    的頭像 發表于 07-03 14:49 ?2110次閱讀

    圖像檢測與識別技術的關系

    檢測技術是指利用計算機視覺技術,對圖像中的特定目標進行定位和識別的過程。它通常包括圖像預處理、特征提取、目標
    的頭像 發表于 07-03 14:43 ?1009次閱讀

    圖像檢測圖像識別的區別是什么

    圖像檢測圖像識別是計算機視覺領域的兩個重要研究方向,它們在許多應用場景中都有著廣泛的應用。盡管它們在某些方面有相似之處,但它們之間還是存在一些明顯的
    的頭像 發表于 07-03 14:41 ?1926次閱讀