女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

射頻應用-利用硅基氮化鎵外延片實現低傳導損耗

電子設計 ? 來源:電子設計 ? 作者:電子設計 ? 2020-10-30 01:16 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

近年來,對 GaN 功率和 RF 器件的各種應用越來越多廣泛,GaN 基產品的需求不斷增長,總部位于新加坡的 IGSS GaN Pte Ltd(IGaN)指出其公司積極開發硅 / 碳化硅基氮化鎵外延片(GaN-on-Si / SiC)和專有的 8 英寸(200 毫米)GaN 制造技術并實現了商業化,產品用于功率,RF 和傳感器應用。

當前,GaN 的材料的寬帶隙可提供出色的擊穿電場和高漂移速度,適合制造高功率和高頻器件,可應用于軍事,國防,航空航天和下一代電信(尤其是 5G 網絡)等領域。在應用方面,III 族氮化物材料(例如 GaN)通常在襯底上異質外延生長。在各種襯底材料中,硅由于有較低的襯底成本和對襯底尺寸的靈活可擴展性,被廣泛地選擇用于包括 III 族氮化物材料的外延疊層的生長。III 型氮化物材料與硅襯底之間的材料特性差異(例如熱膨脹系數和晶格常數)可能會給實際應用帶來技術挑戰(即裂紋,缺陷,晶圓彎曲和晶體質量)。

但是,盡管 GaN-on-Si 射頻電子器件顯示出巨大的前景,但仍有一些問題需要解決。比如,在 III 型氮化物 / 硅界面處形成了一個寄生通道,這會導致寄生損耗,嚴重降低設備的輸出功率,功率增益和效率,尤其是當它們在高頻下工作時。在 RF 應用中,GaN-on-Si 高電子遷移率晶體管(HEMT)的關鍵要求是減少 AlN / Si 界面的傳導損耗。在反應器中摻雜 Al 和 Ga,而使 AlN / Si 界面變得導電,因此反應器的預處理和硅襯底上第一層 AlN 層的生長條件對于抑制傳導損耗至關重要。

IGaN 公司聲稱其技術具有實現極低傳導損耗的獨特優勢,符合用于射頻應用的 GaN-on-Si HEMT 的行業標準。最近 IGaN 公司制備的 GaN-on-Si HEMT 晶圓在 10GHz 的工作頻率下,可實現室溫時的傳導損耗為 0.15dB,高溫下的傳導損耗為 0.23dB,顯示了 10GHz 的工作頻率下,在室溫和高溫下的傳導損耗測量值。低傳導損耗是實現低 RF 損耗的關鍵因素,這對于 RF 設備至關重要。

除了傳導損耗測試外,IGaN 還實施了一種在 fab 加工前篩選出性能較差的 GaN 外延片的快速方法,該方法可以節省客戶昂貴的報廢成本,并有助于避免在外延片襯底具有高傳導損耗的情況下對下游加工的晶圓和封裝器件造成潛在的浪費。IGaN 公司指出,早期發現高傳導損耗的外延片對于 RF-GaN 器件的大規模生產至關重要。

審核編輯 黃昊宇

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 射頻
    +關注

    關注

    106

    文章

    5758

    瀏覽量

    170421
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    如何在開關模式電源中運用氮化技術

    LTspice?作為合適的工具鏈來使用,以便成功部署GaN開關。 引言 氮化(GaN)是一種III-V族半導體,為開關電模式電源(SMPS)提供了出眾的性能。GaN技術具有高介電強度、開關
    發表于 06-11 10:07

    國內氮化大廠被申請破產:曾規劃投資50億,年產36萬晶圓

    半導體的破產重整。 ? 聚力成半導體早期由重慶捷舜科技有限公司投資設立,并于2018年9月與重慶大足區政府簽約,啟動外延和芯片產線項目,主要業務是
    的頭像 發表于 05-22 01:07 ?2834次閱讀
    國內<b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>大廠被申請破產:曾規劃投資50億,年產36萬<b class='flag-5'>片</b>晶圓

    330W氮化方案,可過EMC

    氮化
    深圳市三佛科技
    發布于 :2025年04月01日 11:31:39

    CE65H110DNDI 能華330W 氮化方案,可過EMC

    和數據通信 伺服電動機 工業的 汽車 CE65H110DNDl一般特性 易于驅動,與標準門驅動器兼容 傳導和開關損耗 符合RoHS標準 CE65H110DNDl好處 通過快速切換提高效率 功率密度
    發表于 03-31 14:26

    氮化(GaN)充電頭安規問題及解決方案

    什么是氮化(GaN)充電頭?氮化充電頭是一種采用氮化(GalliumNitride,GaN
    的頭像 發表于 02-27 07:20 ?1100次閱讀
    <b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>(GaN)充電頭安規問題及解決方案

    氮化硼散熱材料大幅度提升氮化快充效能

    什么是氮化(GaN)充電頭?氮化充電頭是一種采用氮化(GalliumNitride,GaN
    的頭像 發表于 02-26 04:26 ?548次閱讀
    <b class='flag-5'>氮化</b>硼散熱材料大幅度提升<b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>快充效能

    高頻低損耗大電流電感 氮化電源方案設計理想之選

    CSBA系列通過采用低損耗金屬磁粉芯材料和優化的線圈結構,進一步降低磁芯損耗和電阻損耗,從而提升氮化電源的整體效率。例如,在數據中心服務器
    的頭像 發表于 02-20 10:50 ?496次閱讀
    高頻低<b class='flag-5'>損耗</b>大電流電感 <b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>電源方案設計理想之選

    氮化充電器和普通充電器有啥區別?

    ,引入了“氮化(GaN)”的充電器和傳統的普通充電器有什么不一樣呢?今天我們就來聊聊。材質不一樣是所有不同的根本 傳統的普通充電器,它的基礎材料是也是電子行業內非常重要的材料。
    發表于 01-15 16:41

    英諾賽科登陸港交所,氮化功率半導體領域明星企業閃耀登場

    近日,全球氮化(GaN)功率半導體領域的佼佼者英諾賽科(2577.HK)成功登陸港交所主板,為港股市場增添了一枚稀缺且優質的投資標的。 英諾賽科作為全球首家實現量產8英吋
    的頭像 發表于 01-06 11:29 ?697次閱讀

    供應SW1102集成氮化直驅的準諧振模式反激控制IC

    功能的谷底開啟模式開降低開關損耗, 在空載和輕載時,控 制器切換至 BURST 模式工作以優化輕載效率;空載待機功耗小于 50mW。 SW1102 內置 6V 的驅動電壓,可直接用于驅動氮化功率管
    發表于 11-04 08:58

    氮化晶圓在劃切過程中如何避免崩邊

    半導體市場的發展。氮化的制造工藝非常相似,12英寸氮化技術發展的一大優勢是可以利用現有的
    的頭像 發表于 10-25 11:25 ?1588次閱讀
    <b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>晶圓在劃切過程中如何避免崩邊

    用于單片集成的外延Ⅲ-Ⅴ族量子阱和量子點激光器研究

    光電子技術以光電子與微電子的深度融合為特征,是后摩爾時代的核心技術。光電子芯片可以利用成熟的微電子平臺
    的頭像 發表于 10-24 17:26 ?1.1w次閱讀
    用于單片集成的<b class='flag-5'>硅</b><b class='flag-5'>基</b><b class='flag-5'>外延</b>Ⅲ-Ⅴ族量子阱和量子點激光器研究

    碳化硅 (SiC) 與氮化 (GaN)應用 | 氮化硼高導熱絕緣

    ,而碳化硅的帶隙為3.4eV。雖然這些值看起來相似,但它們明顯高于的帶隙。的帶隙僅為1.1eV,比氮化和碳化硅小三倍。這些化合物的較高帶隙允許
    的頭像 發表于 09-16 08:02 ?1390次閱讀
    碳化硅 (SiC) 與<b class='flag-5'>氮化</b><b class='flag-5'>鎵</b> (GaN)應用  | <b class='flag-5'>氮化</b>硼高導熱絕緣<b class='flag-5'>片</b>

    氮化和砷化哪個先進

    景和技術需求。 氮化(GaN)的優勢 高頻與高效率 :氮化具有高電子遷移率和電阻率,使得它在高頻和高功率應用中表現出色。例如,在5G通
    的頭像 發表于 09-02 11:37 ?5399次閱讀

    氮化和碳化硅哪個有優勢

    的電子遷移率和較低的損耗,使其在高頻應用方面表現出色。這使得氮化成為制造微波器件、功率放大器以及射頻IC等高頻電子設備的理想材料。 氮化
    的頭像 發表于 09-02 11:26 ?3298次閱讀