女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

機器學習將影響著電網領域的發展

我快閉嘴 ? 來源:千家網 ? 作者:蒙光偉 ? 2020-07-07 10:05 ? 次閱讀

隨著能源格局即將發生巨大變化,現在是結合機器學習和電網的優秀時機。

比爾·蓋茨(Bill Gates)在2017年表示:“如果我今天剛開始并尋找同一種對世界產生重大影響的機會,我將考慮三個領域。一是人工智能;第二是能源;第三是生物科學”。

毫無疑問,能源的未來在于可持續、可靠和“智能”的發電和配電系統,以及主動而不是被動的網絡。電力公司擁有與網絡故障、網絡模型,來自發電機的運行信息和資產數據庫相關的大量且不斷增長的數據。

數據具有預測網絡故障和協助維護的巨大潛力。將來,通過機器學習,添加網絡故障記錄將是解決方案的一部分,而不是問題。通過添加更多記錄,可以為模型提供更多分析數據,從而可以進行更準確,更準確的預測。

例如,機器學習算法可以訪問具有類型、位置、使用期限或使用期限配置文件和資產狀況、電路和負載數據以及現有故障數據的數據庫,并將故障的概率和成本返回為以及可能發生的時間,如以小時、天、周或月為單位。

機器學習有可能被用作經濟的建模工具,通過成本效益分析評估與使用電網加固解決方案有關的戰略發展和決策。將來,我們不僅將對故障做出反應,還將使用通過分析技術經濟數據來預測故障的模型來預測和避免故障。因此,通過機器學習,電力行業在開發主動系統而非被動系統方面邁出了一步。

在后疫情時代,最緊迫的挑戰是氣候變化,以英國為例,他們承諾到2050年過渡到零凈經濟,電力網絡將發展到更加可再生的基礎。我們已經可以看到,隨著清潔能源的發電在2020年的前三個月英國提供了40%的電力,可再生能源的地位日益增長,這是可再生能源首次超過化石燃料。

分析人士認為,可再生能源和可持續能源產業應像上次經濟衰退那樣發揮更大的作用,并推動綠色經濟復蘇。盡管并非沒有挑戰,但這是可能的,并且機器學習可以解決某些問題。

即使使用最復雜的天氣預報,也很難準確預測風能和太陽能等可再生能源發電的波動。此外,內部安裝的設備(例如光伏和電池)的小型分布式發電和存儲(全球范圍為5000萬個)增加了系統的不確定性。

機器學習和人工智能可能會解決這些問題,因為這些算法可用于更準確地預測需求,以及可再生能源發電的輸出,無論短期還是長期都使用預測。

現在,已開始使用已安裝的儲能裝置(包括電池)來最大程度地減少可再生能源發電的不確定性,并幫助實現可再生能源需求的更高百分比。但是,該解決方案可能存在可靠性問題和局限性,例如電池退化和意外故障,需要不斷監控和維護。

使用機器學習作為工具來監視和預測儲能系統中的潛在故障可能會導致系統更加可靠和高效,并且通過使用AI和機器學習算法,電力需求和可再生能源發電將更加可預測,儲能更加可靠并高效。

科學界已經在研究電力網絡中“智能”能源和機器學習的美好前景。關于能源需求的預測,太陽能發電的預測,甚至對可以從城市環境中的食物垃圾中收集的能量的精確預測,已經有很多說法。考慮到其他領域對AI和機器學習的深入了解和廣泛使用,隨著我們過渡到零凈經濟和社會,電網領域的可能性令人興奮。
責任編輯:tzh

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 電網
    +關注

    關注

    13

    文章

    2231

    瀏覽量

    60179
  • 人工智能
    +關注

    關注

    1804

    文章

    48726

    瀏覽量

    246622
  • 機器學習
    +關注

    關注

    66

    文章

    8492

    瀏覽量

    134117
收藏 人收藏

    評論

    相關推薦
    熱點推薦

    機器學習模型市場前景如何

    當今,隨著算法的不斷優化、數據量的爆炸式增長以及計算能力的飛速提升,機器學習模型的市場前景愈發廣闊。下面,AI部落小編探討機器學習模型市場
    的頭像 發表于 02-13 09:39 ?294次閱讀

    傳統機器學習方法和應用指導

    用于開發生物學數據的機器學習方法。盡管深度學習(一般指神經網絡算法)是一個強大的工具,目前也非常流行,但它的應用領域仍然有限。與深度學習相比
    的頭像 發表于 12-30 09:16 ?1048次閱讀
    傳統<b class='flag-5'>機器</b><b class='flag-5'>學習</b>方法和應用指導

    ASR和機器學習的關系

    自動語音識別(ASR)技術的發展一直是人工智能領域的一個重要分支,它使得機器能夠理解和處理人類語言。隨著機器學習(ML)技術的迅猛
    的頭像 發表于 11-18 15:16 ?693次閱讀

    NPU與機器學習算法的關系

    在人工智能領域機器學習算法是實現智能系統的核心。隨著數據量的激增和算法復雜度的提升,對計算資源的需求也在不斷增長。NPU作為一種專門為深度學習
    的頭像 發表于 11-15 09:19 ?1097次閱讀

    具身智能與機器學習的關系

    具身智能(Embodied Intelligence)和機器學習(Machine Learning)是人工智能領域的兩個重要概念,它們之間存在著密切的關系。 1. 具身智能的定義 具身智能是指智能體
    的頭像 發表于 10-27 10:33 ?915次閱讀

    RISC-V在AI領域發展前景怎么樣?

    隨著人工智能的不斷發展,現在的視覺機器人,無人駕駛等智能產品的不斷更新迭代,發現ARM占用很大的市場份額,推出的ARM Cortex M85性能也是杠杠的,不知道RISC-V在AI領域有哪些參考方案?
    發表于 10-25 19:13

    機器人技術的發展趨勢

    機器人技術的發展趨勢呈現出多元化、智能化和廣泛應用的特點。 一、智能化與自主化 人工智能(AI)與機器學習 : AI和機器
    的頭像 發表于 10-25 09:27 ?2202次閱讀

    節能回饋式負載技術創新與發展

    隨著科技的不斷發展,節能回饋式負載技術已經成為了電力系統中不可或缺的一部分。這種技術通過負載的能量回饋到電網中,實現了能源的有效利用,降低了能源消耗,減少了環境污染。本文將對節能回饋式負載技術
    發表于 10-17 09:46

    【「時間序列與機器學習」閱讀體驗】+ 鳥瞰這本書

    的交織中不斷成長。 讀者對這本書的評價普遍很高。他們稱贊作者用通俗易懂的語言復雜的概念解釋得透徹清晰,即使是初學者也能輕松入門。同時,書中豐富的案例和詳細的步驟指導也讓讀者快速積累經驗,提高實戰技能。甚至有讀者表示,這本書已經成為時間序列分析、機器
    發表于 08-12 11:28

    【「時間序列與機器學習」閱讀體驗】+ 簡單建議

    這本書以其系統性的框架和深入淺出的講解,為讀者繪制了一幅時間序列分析與機器學習融合應用的宏偉藍圖。作者不僅扎實地構建了時間序列分析的基礎知識,更巧妙地展示了機器學習如何在這一
    發表于 08-12 11:21

    【《時間序列與機器學習》閱讀體驗】+ 了解時間序列

    速度。 可以探索現象發展變化的規律,對某些社會經濟現象進行預測。 利用時間序列可以在不同地區或國家之間進行對比分析,這也是統計分析的重要方法之一。 而《時間序列與機器學習》一書的后幾章分別介紹了時間序列在廣告
    發表于 08-11 17:55

    人工智能、機器學習和深度學習是什么

    在科技日新月異的今天,人工智能(Artificial Intelligence, AI)、機器學習(Machine Learning, ML)和深度學習(Deep Learning, DL)已成為
    的頭像 發表于 07-03 18:22 ?2544次閱讀

    機器學習在數據分析中的應用

    隨著大數據時代的到來,數據量的爆炸性增長對數據分析提出了更高的要求。機器學習作為一種強大的工具,通過訓練模型從數據中學習規律,為企業和組織提供了更高效、更準確的數據分析能力。本文深入
    的頭像 發表于 07-02 11:22 ?1278次閱讀

    深度學習與傳統機器學習的對比

    在人工智能的浪潮中,機器學習和深度學習無疑是兩大核心驅動力。它們各自以其獨特的方式推動著技術的進步,為眾多領域帶來了革命性的變化。然而,盡管它們都屬于
    的頭像 發表于 07-01 11:40 ?2230次閱讀

    名單公布!【書籍評測活動NO.35】如何用「時間序列與機器學習」解鎖未來?

    和專業知識,對這一領域進行系統的梳理和總結。然而,時間序列分析與機器學習技術相結合的書籍卻并不多見。 以上正是《時間序列與機器
    發表于 06-25 15:00