女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

卷積神經網絡 物體檢測 YOLOv2

倩倩 ? 來源:三姐的哥 ? 2020-04-17 15:51 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

繼2015的YOLO后,2016年作者對YOLO升級到YOLO2,另外一個版本YOLO9000是基于wordtree跨數據集達到檢測9000個分類,卷積層模型稱為darknet-19,達到速度和效果的雙提升,文章里充滿了作者的自豪,也值得自豪;

作者正視了YOLO的兩個大問題:回歸框不精準和召回不夠;一般的解決思路都是把網絡加深加寬,不過本文不屑,作者反而要通過優化網絡學習在準確率不降的情況下提升精度和召回!

升級點

Batch Normalization:每個卷積層加了BN,正則都不要了,droupout也省了,過擬合也沒了,效果還好了,+2%mAP;

High Resolution Classifier - 高分辨率分類:模型訓練時經典做法都是先在ImageNet上pre-train,然而ImageNet上的圖片是低分辨率小于256*256的,而要檢測的圖片是高分辨率448*448的,這樣模型需要同時在高分辨的圖片上做fine-tune和檢測,所以作者提出了三步驟 1) 在ImageNet低分辨率上pre-train;2) 在高分辨率數據集上fine-tune;3) 在高分辨率數據集上檢測;使得模型更容易學習,+4%mAP

Convolution with Anchor Boxer - 加Anchor機制:YOLO是通過最后的全連接層直接預估絕對坐標,而FasterRCNN是通過卷積層預估相對坐標,作者認為這樣更容易學習,因此YOLOv2去掉了全連接層,在最后一層卷積層下采樣后用Anchor,yolo有7*7*2 = 98個框,而YOLOv2有超過1k的anchor,最終效果上雖然mAP略有下降3個千分點,但是召回提升7個百分點,值了!

Dimension Clusters - 維度聚類: Anchor的尺寸faster rcnn里人工選定的,YOLOv2通過k-mean聚類的方法,將訓練數據里gt的框進行聚類,注意這里不能直接用歐式距離,大框會比小框影響大,我們的目標是IOU,因此距離為: d(box, centroid) = 1 IOU(box, centroid);下圖是結果,左圖是k和IOU的trand-off,右圖是5個中心的框尺寸,明顯看出和人工指定的差異很大;

Direct location prediction - 直接預測位置:直接預測x,y會導致模型訓練不穩定,本文預測如下tx,ty,tw,th,to,通過sigmolid歸一化到(0,1),結合dimension clusters,+5%mAP

Fine-Grained Freture - 細粒度特征:引入passthrough layer,將低維度特征傳遞給高維度,類似于resnet的shortcut,+1%mAP;

Multi-Scale Training - 多尺度訓練:這里的多尺度是圖片的尺寸,多了迫使模型適應更大范圍的尺寸,每隔一定的epoch就強制改變輸入圖片的尺寸;

效果

如下是在VOC數據集上效率(每秒處理幀數)和效果(mAP)空間里不同算法的變現,其中YOLOv2為藍色,有不同的trade-off,效率和效果都超過已有的方法;

如下是更多的實驗結果:

如下是COCO上的效果,看得出COCO數據集還是很難的,小物體上YOLO2依然是差一些;

YOLO9000: Better, Faster, Stronger

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 算法
    +關注

    關注

    23

    文章

    4709

    瀏覽量

    95318
  • 數據集
    +關注

    關注

    4

    文章

    1223

    瀏覽量

    25429
  • voc
    voc
    +關注

    關注

    0

    文章

    108

    瀏覽量

    15918
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    卷積神經網絡如何監測皮帶堵料情況 #人工智能

    卷積神經網絡
    jf_60804796
    發布于 :2025年07月01日 17:08:42

    無刷電機小波神經網絡轉子位置檢測方法的研究

    MATLAB/SIMULINK工具對該方法進行驗證,實驗結果表明該方法在全程速度下效果良好。 純分享帖,點擊下方附件免費獲取完整資料~~~ *附件:無刷電機小波神經網絡轉子位置檢測方法的研究.pdf
    發表于 06-25 13:06

    BP神經網絡卷積神經網絡的比較

    BP神經網絡卷積神經網絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結構特點 BP神經網絡 : BP神經網絡是一種多層的前饋
    的頭像 發表于 02-12 15:53 ?654次閱讀

    人工神經網絡的原理和多種神經網絡架構方法

    在上一篇文章中,我們介紹了傳統機器學習的基礎知識和多種算法。在本文中,我們會介紹人工神經網絡的原理和多種神經網絡架構方法,供各位老師選擇。 01 人工神經網絡 ? 人工神經網絡模型之所
    的頭像 發表于 01-09 10:24 ?1177次閱讀
    人工<b class='flag-5'>神經網絡</b>的原理和多種<b class='flag-5'>神經網絡</b>架構方法

    卷積神經網絡的實現工具與框架

    卷積神經網絡因其在圖像和視頻處理任務中的卓越性能而廣受歡迎。隨著深度學習技術的快速發展,多種實現工具和框架應運而生,為研究人員和開發者提供了強大的支持。 TensorFlow 概述
    的頭像 發表于 11-15 15:20 ?664次閱讀

    卷積神經網絡的參數調整方法

    卷積神經網絡因其在處理具有空間層次結構的數據時的卓越性能而受到青睞。然而,CNN的成功很大程度上依賴于其參數的合理設置。參數調整是一個復雜的過程,涉及到多個超參數的選擇和優化。 網絡架構參數
    的頭像 發表于 11-15 15:10 ?1202次閱讀

    使用卷積神經網絡進行圖像分類的步驟

    使用卷積神經網絡(CNN)進行圖像分類是一個涉及多個步驟的過程。 1. 問題定義 確定目標 :明確你想要分類的圖像類型,例如貓和狗、不同的植物種類等。 數據需求 :確定需要多少數據以及數據的類型
    的頭像 發表于 11-15 15:01 ?837次閱讀

    卷積神經網絡在自然語言處理中的應用

    自然語言處理是人工智能領域的一個重要分支,它致力于使計算機能夠理解、解釋和生成人類語言。隨著深度學習技術的發展,卷積神經網絡(CNNs)作為一種強大的模型,在圖像識別和語音處理等領域取得了顯著成果
    的頭像 發表于 11-15 14:58 ?793次閱讀

    卷積神經網絡與傳統神經網絡的比較

    在深度學習領域,神經網絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經網絡(CNNs)和傳統神經網絡是兩種常見的模型。 1. 結構差異 1.1 傳統
    的頭像 發表于 11-15 14:53 ?1854次閱讀

    深度學習中的卷積神經網絡模型

    深度學習近年來在多個領域取得了顯著的進展,尤其是在圖像識別、語音識別和自然語言處理等方面。卷積神經網絡作為深度學習的一個分支,因其在圖像處理任務中的卓越性能而受到廣泛關注。 卷積神經網絡
    的頭像 發表于 11-15 14:52 ?837次閱讀

    卷積神經網絡的基本原理與算法

    卷積神經網絡(Convolutional Neural Networks,CNN)是一類包含卷積計算且具有深度結構的前饋神經網絡(Feedforward Neural Networks
    的頭像 發表于 11-15 14:47 ?1769次閱讀

    RNN模型與傳統神經網絡的區別

    神經網絡是機器學習領域中的一種強大工具,它們能夠模擬人腦處理信息的方式。隨著技術的發展,神經網絡的類型也在不斷增加,其中循環神經網絡(RNN)和傳統神經網絡(如前饋
    的頭像 發表于 11-15 09:42 ?1122次閱讀

    關于卷積神經網絡,這些概念你厘清了么~

    隨著人工智能(AI)技術的快速發展,AI可以越來越多地支持以前無法實現或者難以實現的應用。本文基于此解釋了 卷積神經網絡 (CNN)及其對人工智能和機器學習的意義。CNN是一種能夠從復雜數據中提
    發表于 10-24 13:56

    【飛凌嵌入式OK3576-C開發板體驗】RKNN神經網絡算法開發環境搭建

    download_model.sh 腳本,該腳本 將下載一個可用的 YOLOv5 ONNX 模型,并存放在當前 model 目錄下,參考命令如下: 安裝COCO數據集,在深度神經網絡算法中,模型的訓練離不開大量的數據集,數據集用于
    發表于 10-10 09:28

    matlab 神經網絡 數學建模數值分析

    matlab神經網絡 數學建模數值分析 精通的可以討論下
    發表于 09-18 15:14