女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

神經網絡為何無法實現人類的推理并產生意識?

倩倩 ? 來源:知識就是力量 ? 2020-04-17 15:16 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

前不久,據華爾街日報報道, Uber在一宗無人車的測試過程中,造成了一名行人死亡的嚴重交通事故,除此之外,環顧我們身邊,蘋果手機的虛擬個人助理Siri有時會無法識別我們在說什么;某些人臉識別支付應用也存在著一些安全問題。這些事件反映出來的一個情況是,目前的AI似乎并沒有足夠的智能,甚至并無法很好地處理從外界獲取的信息。

人腦中的神經網絡是一個非常復雜的組織,成人的大腦中約有1000億個神經元,人類至今仍在探索人腦的工作原理。而人們通過對生物神經元的研究和理解,構建了一個模擬人腦的計算模型:人工神經網絡!

那么,人工神經網絡是什么?人類通過構造神經網絡,能否給AI賦能,使之自我進化?

什么是神經網絡?

簡單來說,神經網絡是一種模擬人腦的計算架構;利用神經網絡進行機器學習,則讓計算機不再只是執行命令的機器,而是具有了一定程度上分析判斷的能力。當然,這個能力也離不開海量的數據和高超的計算能力。

一個經典的神經網絡一般包含三個層次:輸入層、隱藏層和輸出層。而這三個層分別模仿的是神經元的樹突、軸突和軸突末梢。輸入層接收外部的輸入數據,比如圖片、文本、語音等,通過,隱層抽象數據的通用模式,進而通過輸出層輸出模型的計算的結果。

歷史上,科學家還設計過多層的神經網絡,每一層都會對前一層傳來的結果進行再次加工,目的是模擬出一種“深思熟慮”的感覺,但最后發現結果準確度并沒有提高,有的時候還會陷入誤區,就像人容易朝著一個思路越陷越深,最后鉆牛角尖了一樣。隨著技術進步,讓這一問題得到改善。現在,最厲害的神經網絡技術不但已經非常接近人腦,還排除了很多人腦自身存在的低效的思維方式。

柯潔在與AlphaGo大戰后,在接受騰訊體育記者的采訪時表示,“我也不敢想象,它居然可以把棋下得那么強硬,撐得那么滿,好像好多塊棋扭在一起,那是人類擅長發揮的地方了。跟它下棋會發現它處理得好像比我們人類還好很多,其實那一刻是很絕望的。甚至是那些研發它的人也不知道是怎么做到這一點的,研發它的人是下不過它的,很多人甚至不懂棋,居然能創造出這么一個怪物。所以,我唯一能感受到的是它對形勢的樂觀和自信,而且是絕對的樂觀和自信,這一點人類是沒有的。再自信也不會像它那么自信,無論你驗證多少次,它都是不可戰勝的。”

神經網絡為何無法實現人類的推理并產生意識?

機器人是否具有意識”一直是人們所爭論的焦點之一,而在這其中,人工神經網絡的技術發展起著重要的作用。對當前的人工神經網絡而言,解決某些特定場景的問題,特別具有優勢,但解決人們習以為常的問題卻非常困難。比如,MIT媒體實驗室研究員joy buolamwini研究文章稱,人臉識別技術針對不同種族的準確率差異巨大,其中針對黑人女性的錯誤率高達35%!

中國工程院院士鄭南寧指出,人工智能研究的一個重要方向,是借鑒認知科學、計算神經科學的研究成果,使計算機通過直覺推理和經驗學習,將自身引導到更高的層次。然而,人腦對真實世界的理解、非完整信息的處理、復雜時空的任務處理能力是當前機器學習無法比擬的,還有人的大腦神經網絡結構的可塑性,以及人腦在非認知因素和認知功能之間的相互作用,都是很難以形式化、公式化的描述。

神經網絡是怎么應用到各領域的?

神經網絡雖然缺乏人類解決問題的強大理解能力,但卻可以通過海量的計算從大量的數據中找到一些通用的模式。因此它們作為輔助工具,已經在各行各業,尤其是在多媒體領域體現了自身的價值。

手寫數字識別應該是神經網絡最早的商業應用之一。大部分的人都可以輕松識別下圖中的手寫數字,但要設計一套計算機程序來識別這些數字,就會發現視覺模式識別的難度。而神經網絡的思想是,利用大量的手寫數字,即訓練樣本,從中自動學習到識別各個數字的規則。而且隨著樣本數量的增加,神經網絡可以學習到更多信息,從而可以進一步提升準確度。目前最好的商用神經網絡已經足夠好到能被銀行用來處理支票,以及被郵局用來識別地址。

MNIST手寫數字數據集一覽

手寫數字或許有些過于簡單,那么使用神經網絡發現地外行星,就更能顯示它的能力了。谷歌和得克薩斯大學奧斯丁分校合作,利用上萬顆被標記的恒星數據,訓練了一個卷積神經網絡,訓練結果顯示,神經網絡判別行星的準確率高達96%。然后,研究人員讓這個神經網絡處理2009年到2013年觀測到的670顆恒星的數據集,通過微小的特征變化,發現了兩個星系存在地外行星的可能性非常高。經過研究人員的驗證,確認了這兩顆新的行星。

神經網絡發現的開普勒-90星系與太陽系的對比

近日,美國FDA首次批準了用于檢測糖尿病視網膜病變的人工智能產品:IDx-DR。這次FDA評估了來自10個初級衛生保健點的900名糖尿病患者的視網膜臨床研究圖像數據,IDx-DR能夠正確識別輕度以上糖尿病性視網膜病變的準確率為87.4%,而正確識別沒有輕度以上的糖尿病性視網膜病變的準確率為89.5%。

在目前比較火熱的無人車領域,雖然各大廠商還在研究測試通用的解決方案,但在一些具體的案例上已經有了一些成果。圖森未來使用自主研發的深度學習感知算法,能夠做到讓攝像頭像人眼一樣實時感知行車周邊環境,檢測和跟蹤視野中的各種物體,能夠對可視場景進行像素級的解讀。憑借視覺高精度定位和多傳感器融合技術,能夠實現高速公路上的無人駕駛,幫助貨運企業降低成本,加快貨運周轉。

總之,神經網絡在不斷地影響著生活、醫療和出行,但科研界對它有更多理性的看法。伯克利大學機器學習專家Michael I. Jordan認為,計算機科學仍然是最首要的學科,人工智能還無法取而代之,而神經網絡只是該領域中仍在發展中的一個部份。

“現在要問神經網絡會把我們帶多遠還為時尚早。”最看好神經網絡發展前景的專家題討論成員——OpenAI共同創辦人兼研究總監Ilya Sutskever表示,“這些模型很難理解。例如,將機器視覺作為一種程序真的很不可思議,但現在我們對不可思議的問題都能提出不可思議的解決方案了。”

無論如何,我們目前正處理人工智能對社會的變革過程中,它們已經從實驗室過渡到了商業部署。無疑,廣泛的工業領域將受到龐大的數據和數據分析功能的深遠影響。盡管神經網絡還無法實現基本的人類推理和理解力,但它們將是建構人工智能漫漫長路上所用到的重要工具之一。

雖然現在神經網絡還無法產生意識,但隨著信息科學、認知科學、神經生物學、心理學等前沿學科和交叉學科的深度融合與不斷發展,人工智能將會迎來新的發展高潮。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 神經網絡
    +關注

    關注

    42

    文章

    4814

    瀏覽量

    103877
  • 神經元
    +關注

    關注

    1

    文章

    368

    瀏覽量

    18859
  • 機器學習
    +關注

    關注

    66

    文章

    8507

    瀏覽量

    134745
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    無刷電機小波神經網絡轉子位置檢測方法的研究

    摘要:論文通過對無刷電機數學模型的推導,得出轉角:與三相相電壓之間存在映射關系,因此構建了一個以三相相電壓為輸人,轉角為輸出的小波神經網絡實現轉角預測,采用改進遺傳算法來訓練網絡
    發表于 06-25 13:06

    神經網絡壓縮框架 (NNCF) 中的過濾器修剪統計數據怎么查看?

    無法觀察神經網絡壓縮框架 (NNCF) 中的過濾器修剪統計數據
    發表于 03-06 07:10

    BP神經網絡與卷積神經網絡的比較

    BP神經網絡與卷積神經網絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結構特點 BP神經網絡 : BP神經網絡是一種多層的前饋神經網絡
    的頭像 發表于 02-12 15:53 ?706次閱讀

    BP神經網絡實現步驟詳解

    BP神經網絡實現步驟主要包括以下幾個階段:網絡初始化、前向傳播、誤差計算、反向傳播和權重更新。以下是對這些步驟的詳細解釋: 一、網絡初始化 確定
    的頭像 發表于 02-12 15:50 ?667次閱讀

    BP神經網絡的優缺點分析

    自學習能力 : BP神經網絡能夠通過訓練數據自動調整網絡參數,實現對輸入數據的分類、回歸等任務,無需人工進行復雜的特征工程。 泛化能力強 : BP神經網絡通過訓練數據學習到的特征表示
    的頭像 發表于 02-12 15:36 ?960次閱讀

    深度學習入門:簡單神經網絡的構建與實現

    深度學習中,神經網絡是核心模型。今天我們用 Python 和 NumPy 構建一個簡單的神經網絡神經網絡由多個神經元組成,神經元之間通過
    的頭像 發表于 01-23 13:52 ?549次閱讀

    人工神經網絡的原理和多種神經網絡架構方法

    在上一篇文章中,我們介紹了傳統機器學習的基礎知識和多種算法。在本文中,我們會介紹人工神經網絡的原理和多種神經網絡架構方法,供各位老師選擇。 01 人工神經網絡 ? 人工神經網絡模型之所
    的頭像 發表于 01-09 10:24 ?1239次閱讀
    人工<b class='flag-5'>神經網絡</b>的原理和多種<b class='flag-5'>神經網絡</b>架構方法

    基于光學衍射神經網絡的軌道角動量復用全息技術的設計與實驗研究

    隨著神經網絡的發展,光學神經網絡(ONN)的研究受到廣泛關注。研究人員從衍射光學、散射光、光干涉以及光學傅里葉變換等基礎理論出發,利用各種光學設備及材料成功實現神經網絡的光學線性運算
    的頭像 發表于 12-07 17:39 ?2840次閱讀
    基于光學衍射<b class='flag-5'>神經網絡</b>的軌道角動量復用全息技術的設計與實驗研究

    卷積神經網絡實現工具與框架

    卷積神經網絡因其在圖像和視頻處理任務中的卓越性能而廣受歡迎。隨著深度學習技術的快速發展,多種實現工具和框架應運而生,為研究人員和開發者提供了強大的支持。 TensorFlow 概述
    的頭像 發表于 11-15 15:20 ?691次閱讀

    卷積神經網絡與傳統神經網絡的比較

    在深度學習領域,神經網絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經網絡(CNNs)和傳統神經網絡是兩種常見的模型。 1. 結構差異 1.1 傳統神經網絡
    的頭像 發表于 11-15 14:53 ?1911次閱讀

    RNN模型與傳統神經網絡的區別

    神經網絡是機器學習領域中的一種強大工具,它們能夠模擬人腦處理信息的方式。隨著技術的發展,神經網絡的類型也在不斷增加,其中循環神經網絡(RNN)和傳統神經網絡(如前饋
    的頭像 發表于 11-15 09:42 ?1165次閱讀

    LSTM神經網絡的基本原理 如何實現LSTM神經網絡

    LSTM(長短期記憶)神經網絡是一種特殊的循環神經網絡(RNN),它能夠學習長期依賴信息。在處理序列數據時,如時間序列分析、自然語言處理等,LSTM因其能夠有效地捕捉時間序列中的長期依賴關系而受到
    的頭像 發表于 11-13 09:53 ?1624次閱讀

    關于卷積神經網絡,這些概念你厘清了么~

    隨著人工智能(AI)技術的快速發展,AI可以越來越多地支持以前無法實現或者難以實現的應用。本文基于此解釋了 卷積神經網絡 (CNN)及其對人工智能和機器學習的意義。CNN是一種能夠從
    發表于 10-24 13:56

    國產芯上運行TinyMaxi輕量級的神經網絡推理庫-米爾基于芯馳D9國產商顯板

    本篇測評由優秀測評者“短笛君”提供。本文將介紹基于米爾電子MYD-YD9360商顯板(米爾基于芯馳D9360國產開發板)的TinyMaxi輕量級的神經網絡推理庫方案測試。 算力測試TinyMaix
    發表于 08-09 18:26

    國產芯上運行TinyMaxi輕量級的神經網絡推理庫-米爾基于芯馳D9國產商顯板

    D9360國產開發板)的TinyMaxi輕量級的神經網絡推理庫方案測試。 算力測試 TinyMaix 是面向單片機的超輕量級的神經網絡推理庫,即 TinyML
    發表于 08-07 18:06