女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

5G時代有哪些值得關(guān)注的無線技術(shù)

Wildesbeast ? 來源:今日頭條 ? 作者:英利檢測1 ? 2020-02-03 12:14 ? 次閱讀

5G NR本是一個矛盾的綜合體,容量與覆蓋難以兼得。

5G通過擴(kuò)展頻譜帶寬來提升系統(tǒng)容量,頻段范圍從4G時代的3GHz以下擴(kuò)展到毫米波頻段,單載波帶寬從20MHz提升到100MHz以上。

但頻段越高,基站覆蓋范圍越小,運(yùn)營商不得不建設(shè)更多基站。

今天,主流5G部署采用5G中頻段,其折中了容量與覆蓋優(yōu)勢,兼顧了室外與室內(nèi)覆蓋,并通過Massive MIMO技術(shù)進(jìn)一步提升了小區(qū)容量和覆蓋,讓運(yùn)營商可以基于現(xiàn)有4G站址建設(shè)一張廣覆蓋的5G網(wǎng)絡(luò)。

但面向未來流量成倍增長,單靠有限的中頻段資源肯定是不夠的,為此運(yùn)營商不得不擴(kuò)展到毫米波頻段,但毫米波信號覆蓋范圍不過一兩百米,根本無法從室外抵達(dá)室內(nèi),這給網(wǎng)絡(luò)建設(shè)投資帶來了空前的壓力。

怎么辦?

唯有通過技術(shù)創(chuàng)新,不斷提升頻譜效率,讓每Hz承載更多的bit,盡可能讓5G部署又好又省。

今天我們就來介紹在后5G時代,乃至6G時代,值得關(guān)注的幾大無線技術(shù)。

NOMA

多址接入是移動通信的核心技術(shù),從1G到5G,我們經(jīng)歷了FDMA、TDMA、CDMA和OFDMA,這些多址接入方案都采用正交設(shè)計,來避免多用戶之間互相干擾。

移動通信領(lǐng)域一直致力于通過無線電波的正交性來提升頻譜效率,我們已經(jīng)采用了頻分、時分、空分、碼分等各種正交辦法,但當(dāng)正交空間耗盡時,我們該怎么辦?

是時候該NOMA出場了。

NOMA,即非正交多址,是一種計劃用于5G(R16版)的多址技術(shù),可顯著提升移動通信網(wǎng)絡(luò)的頻譜效率。

眾所周知,4G和目前5G采用的是OFDMA(正交頻分多址),每個用戶占用的時頻資源是分開的、相互正交的,由于受正交性的約束,每個UE分配一定的子載波,每個UE占用部分頻率資源

。而NOMA與OFDMA不同,它基于非正交性設(shè)計,每個UE可以使用所有的資源。

NOMA與OFDMA

那么,問題來了,NOMA是如何避免多用戶之間的互干擾呢?

NOMA的基本思想是,在發(fā)送端將多個UE信號疊加,占用所有時頻資源,并通過空口發(fā)送,而在接收端,基于MUD(多用戶檢測)和SIC(串行干擾消除)技術(shù)來逐個解碼信號,提取有用信號。

NOMA主要有兩種方式:基于碼域和基于功率域。基于碼域,即為每個用戶分配非正交擴(kuò)展碼(與WCDMA碼相似,不同之處在于WCDMA碼是正交的)。基于功率域,即在發(fā)送端每個用戶信號以不同的功率電平疊加。

以基于功率域的NOMA方案為例,其工作原理是這樣的:

如上圖所示,三個UE信號被分配不同的功率電平,距離基站最近的UE1信道條件最好,被分配最低的功率,而距離基站最遠(yuǎn)的UE3被分配最高的功率,處于中間位置的UE2被分配適中的功率。

在基站發(fā)送端,UE1、UE2和UE3都占用相同的所有時頻資源,三者的信號在功率域進(jìn)行疊加,并通過空口發(fā)送。

在UE接收端,SIC首先解碼接收信號強(qiáng)度最強(qiáng)的信號,比如UE1,由于分配給它的功率遠(yuǎn)低于UE3,它可能會首先解碼UE3的信號,并通過MA簽名判斷是否為自己的有用信號,如果不是,則刪除UE3的信號,接著再重復(fù)該過程,直到找到自己的有用信號為止。

而對于UE3,由于分配給它的功率高于UE1和UE2,其第一個解碼的信號可能就是自己的有用信號,因此可以直接解碼得到。

由于NOMA將所有的空口資源分配給了所有用戶,因此可以提升頻譜效率。

尤其在小區(qū)邊緣,由于無線環(huán)境差,采用正交多址的5G網(wǎng)絡(luò)不得不采用稀疏的調(diào)制和編碼來克服信道受損,這會導(dǎo)致PRB資源“浪費(fèi)”。

但在NOMA中,所有用戶使用所有PRB資源,無論處于小區(qū)中心還是邊緣都一樣,從而提升了頻譜效率。

值得一提的是,NOMA還可以與Massive MIMO結(jié)合使用。在Massive MIMO下,可在廣播波束范圍內(nèi)將一個物理扇區(qū)分裂為多個虛擬扇區(qū),虛擬扇區(qū)服務(wù)的用戶采用NOMA,由于虛擬扇區(qū)之間是正交的,從而還可使系統(tǒng)容量進(jìn)一步翻倍。

不過,NOMA也存在自身的挑戰(zhàn)。首先,MUD/SIC需要額外的計算,需要更強(qiáng)的硬件支持,以及會產(chǎn)生更高的功耗。雖然對于基站側(cè)來說不是問題,但對終端就麻煩了,會增加終端成本和耗電。其次,在NOMA下,基站要為所有的UE進(jìn)行分組分配功率,這要求基站必須準(zhǔn)確的了解各個UE的信道狀況。

全雙工

今天5G采用TDD雙工模式,4G時代包括TDD和FDD,但嚴(yán)格的講,TDD和FDD都只是“半雙工”,因?yàn)門DD在同一頻段上的不同時隙傳輸上下行信號,F(xiàn)DD在兩個對稱頻段上分別傳輸上下行信號。

而全雙工技術(shù)可以實(shí)現(xiàn)在同一頻段下同時進(jìn)行上下行信號傳輸(同時發(fā)送和接收信號),這無疑可大幅提升頻譜效率。

同時,由于全雙工在同一時間收發(fā)數(shù)據(jù),發(fā)送完數(shù)據(jù)即可接收反饋信息,這還能縮短傳輸時延。

但全雙工遇到的最大挑戰(zhàn)來自發(fā)射信號對接收信號產(chǎn)生強(qiáng)大的自干擾,比如在蜂窩網(wǎng)絡(luò)中,發(fā)射功率可高達(dá)幾十瓦,而接收功率只有幾皮瓦,這意味著,發(fā)射產(chǎn)生的干擾信號比接收到的有用信號可能強(qiáng)數(shù)十億倍,無線發(fā)射器將很快使接收器飽和。

由上圖所示,由于雙工器泄露、天線反射、多徑反射等因素,發(fā)射信號摻雜進(jìn)接收信號,產(chǎn)生了強(qiáng)大的自干擾。

怎樣消除這些干擾呢?

幸運(yùn)的是,由于發(fā)射信號是已知的,那么就可以用發(fā)射信號作為參考來消除自干擾。

但是,參考信號在數(shù)字域比較容易獲得,當(dāng)數(shù)字信號轉(zhuǎn)換為模擬信號后,由于線性失真和非線性失真的影響,就很難從中獲得參考。

因此,全雙工要消除自干擾,RF域是最大的挑戰(zhàn)。目前自干擾消除技術(shù)正在不斷進(jìn)步,但實(shí)現(xiàn)復(fù)雜度和成本太高。

解決該問題的一個辦法是,分離發(fā)射和接收天線,將它們彼此間隔安裝,再通過天線旁瓣抑制等辦法來實(shí)現(xiàn)去耦,再加上空間路徑損耗,這樣可以大大減少自干擾。

不過,這種辦法在基站側(cè)可行,但在終端側(cè),由于受限于空間,是不可行的。因此,最終全雙工技術(shù)可能會在基站側(cè)部署,而終端側(cè)或?qū)⒗^續(xù)采用TDD雙工技術(shù)。

OAM

除了時間、頻率和極化以外,還有新的可利用的無線電波正交狀態(tài)嗎?那就是電磁輻射的軌道角動量OAM。

受螺旋相位因子的影響,具有OAM的電磁波被稱為“渦旋電磁波”,沿著傳播方向呈螺旋狀。

具有OAM的電磁波的相位旋轉(zhuǎn)結(jié)構(gòu)稱為OAM模式。具有不同OAM模式的無線電波相互正交,互不干擾,因此在同一頻點(diǎn)上可傳輸多路調(diào)制在不同的OAM模式上的信號,從而提升頻譜效率。

理論上講,有幾十個不同的OAM值調(diào)制無線信號,可以有效地將頻譜效率提升幾十倍。

OAM復(fù)用原理

但是,到目前為止,OAM的實(shí)際演示僅限于近場應(yīng)用。大氣湍流會使無線電波的OAM失真,引起串?dāng)_,因此OAM要應(yīng)用于蜂窩網(wǎng)絡(luò)還有很多工作要做。

機(jī)器學(xué)習(xí)

機(jī)器學(xué)習(xí)可用于優(yōu)化5G空口,來提高頻譜效率。

5G NR的所有層都可以通過機(jī)器學(xué)習(xí)來優(yōu)化,比如,機(jī)器學(xué)習(xí)可優(yōu)化物理層的調(diào)制、FEC、MIMO、信號檢測、功控和波束賦形,機(jī)器學(xué)習(xí)可優(yōu)化層二的調(diào)度、HARQ和流量控制,機(jī)器學(xué)習(xí)還可優(yōu)化層三的移動性管理、負(fù)載管理和連接管理等。

機(jī)器學(xué)習(xí),尤其是深度強(qiáng)化學(xué)習(xí),可以基于流量狀況和無線環(huán)境動態(tài)地作出優(yōu)化決策,以使網(wǎng)絡(luò)始終保持最佳狀態(tài)。

以調(diào)制方式為例,更高階的調(diào)制方式可以提升傳輸速率,比如,在4G時代我們希望所有的UE都能最大化使用256QAM,以獲得更好頻譜效率。

但在現(xiàn)實(shí)中這是不可能的,因?yàn)殡S著SINR降低(比如UE位于小區(qū)邊緣時),越高階的QAM星座圖會失真,使得接收端越難解調(diào)。

而有了機(jī)器學(xué)習(xí)后,可以通過學(xué)習(xí)復(fù)雜的失真模式,來實(shí)現(xiàn)以較低的SINR解調(diào)更高階的調(diào)制方式,從而可提升系統(tǒng)的頻譜效率。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 無線技術(shù)
    +關(guān)注

    關(guān)注

    13

    文章

    901

    瀏覽量

    55692
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8492

    瀏覽量

    134125
  • 5G
    5G
    +關(guān)注

    關(guān)注

    1360

    文章

    48738

    瀏覽量

    570490
收藏 人收藏

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    熱門5G路由器參數(shù)對比,華為智選Brovi 5G CPE 5 VS SUNCOMM SDX75

    遠(yuǎn)程部署、鎖頻、VPN、打電話、外接天線……那SDX75,值得研究。 如果你喜歡這種對比文,別忘了點(diǎn)個關(guān)注!下一篇我會拉上中興、烽火、鯤鵬幾個熱門5G CPE,一起搞一場“插卡路由五國混戰(zhàn)”。
    發(fā)表于 06-05 13:54

    5G 時代,TNC 連接器標(biāo)準(zhǔn)如何升級?

    5G 時代促使 TNC 連接器標(biāo)準(zhǔn)在電氣性能、尺寸設(shè)計、兼容性與可靠性等多方面升級。德索憑借先進(jìn)技術(shù)和創(chuàng)新理念,不斷推動 TNC 連接器標(biāo)準(zhǔn)的完善,為 5G 通信及相關(guān)領(lǐng)域的發(fā)展提供堅
    的頭像 發(fā)表于 05-16 09:51 ?119次閱讀
    <b class='flag-5'>5G</b> <b class='flag-5'>時代</b>,TNC 連接器標(biāo)準(zhǔn)如何升級?

    6G通信技術(shù)5G哪些不同?

    6G通信技術(shù)相較于5G通信技術(shù),在多個方面都有顯著的不同和提升。以下是對6G5G通信
    的頭像 發(fā)表于 04-17 16:34 ?930次閱讀

    5G網(wǎng)絡(luò)中,信令測試儀如何幫助提升用戶體驗(yàn)?

    令測試儀能夠?qū)崟r捕獲5G網(wǎng)絡(luò)中的信令數(shù)據(jù),包括無線接入網(wǎng)、核心網(wǎng)和用戶設(shè)備(UE)之間的交互信息。 通過對信令數(shù)據(jù)的深度分析,信令測試儀可以迅速找出網(wǎng)絡(luò)中的故障點(diǎn)和性能瓶頸,如信號干擾、資源分配失敗
    發(fā)表于 03-21 14:33

    5G 時代 TNC 插頭的創(chuàng)新變革與發(fā)展

    5G 時代的通信技術(shù)變革浪潮中,TNC 插頭通過材料創(chuàng)新、設(shè)計優(yōu)化、制造工藝改進(jìn)以及嚴(yán)格的測試與驗(yàn)證,成功地滿足了 5G 通信對高頻性能、低插入損耗、高可靠性和小型化的嚴(yán)格要求。這
    的頭像 發(fā)表于 02-12 11:49 ?416次閱讀
    <b class='flag-5'>5G</b> <b class='flag-5'>時代</b> TNC 插頭的創(chuàng)新變革與發(fā)展

    6G通信技術(shù)對比5G哪些不同?

    更高的傳輸速率:6G網(wǎng)絡(luò)的理論傳輸速率將得到極大提升,業(yè)內(nèi)普遍認(rèn)為6G的通信能力將達(dá)到5G的10倍以上,甚至可能達(dá)到每秒1TB的下載速度,比5G
    的頭像 發(fā)表于 11-22 18:49 ?1336次閱讀

    愛立信5G增強(qiáng)技術(shù)測試再獲佳績

    近日,在IMT-2020(5G)推進(jìn)組的指導(dǎo)下,愛立信完成了基于意圖驅(qū)動的5G基站節(jié)能測試、無線信道環(huán)境數(shù)字孿生應(yīng)用演示等5G增強(qiáng)技術(shù)測試和
    的頭像 發(fā)表于 11-08 09:28 ?9334次閱讀

    華為5g技術(shù)介紹 華為5g技術(shù)的優(yōu)勢

    華為5G技術(shù)是當(dāng)今全球通信技術(shù)領(lǐng)域的佼佼者,以其卓越的性能和廣泛的應(yīng)用前景而備受矚目。以下是對華為5G技術(shù)的介紹及其優(yōu)勢分析: 一、華為
    的頭像 發(fā)表于 10-18 18:21 ?3855次閱讀

    無線通信最前沿的技術(shù)哪些

    無線通信技術(shù)是現(xiàn)代通信系統(tǒng)的核心,它的發(fā)展和創(chuàng)新對于提高通信效率、降低成本、增強(qiáng)用戶體驗(yàn)等方面都具有重要意義。隨著科技的不斷進(jìn)步,無線通信技術(shù)也在不斷地發(fā)展和完善。 1.
    的頭像 發(fā)表于 10-15 16:37 ?2724次閱讀

    5G新通話技術(shù)取得新進(jìn)展

    在探討5G新通話這一話題時,我們需首先明確其背景與重要性。自2022年4月國內(nèi)運(yùn)營商正式推出以來,5G新通話作為傳統(tǒng)語音通話的升級版,迅速吸引了公眾的目光,并引起了社會的廣泛關(guān)注。它基于5G
    的頭像 發(fā)表于 10-12 16:02 ?1173次閱讀

    媒體訪談 | 5G RedCap技術(shù),開啟5G輕量化新篇章

    5G技術(shù)的飛速發(fā)展帶來了革命性的變革,而RedCap作為5G演進(jìn)的標(biāo)志性技術(shù),自誕生以來便受到了業(yè)界的極大關(guān)注。7月25日,智次方·物聯(lián)網(wǎng)智
    的頭像 發(fā)表于 08-01 08:29 ?1041次閱讀
    媒體訪談 | <b class='flag-5'>5G</b> RedCap<b class='flag-5'>技術(shù)</b>,開啟<b class='flag-5'>5G</b>輕量化新篇章

    大唐移動移動市場5G無線產(chǎn)品

    大唐移動移動市場5G無線產(chǎn)品參數(shù)及技術(shù)介紹
    發(fā)表于 07-27 13:32 ?3次下載

    封裝技術(shù)5G時代的創(chuàng)新與應(yīng)用

    共讀好書 張墅野,邵建航,何 鵬 ? ? 5G 時代的到來將通信系統(tǒng)的工作頻段推入毫米波波段,這給毫米波器件的封裝帶來了挑戰(zhàn).5G 系統(tǒng)需要將射頻、模擬、數(shù)字功能和無源器件以及其他系統(tǒng)組件集成在一個
    的頭像 發(fā)表于 07-22 11:42 ?1250次閱讀
    封裝<b class='flag-5'>技術(shù)</b>在<b class='flag-5'>5G</b><b class='flag-5'>時代</b>的創(chuàng)新與應(yīng)用

    嵌入式設(shè)備中的4G/5G模塊管理

    在高度數(shù)字化的智能時代,Linux嵌入式板卡在各個領(lǐng)域都發(fā)揮著重要作用,然而,隨著4G/5G技術(shù)的普及,如何高效、穩(wěn)定地管理這些嵌入式設(shè)備上的無線
    發(fā)表于 07-13 16:45

    5G技術(shù)引領(lǐng)固定無線接入(FWA)飛速增長

    隨著5G技術(shù)的深入發(fā)展和普及,固定無線接入(FWA)作為5G用例的重要一環(huán),正展現(xiàn)出強(qiáng)勁的增長勢頭。在過去的一年里,全球范圍內(nèi)提供FWA服務(wù)的運(yùn)營商數(shù)量顯著增加,標(biāo)志著
    的頭像 發(fā)表于 06-28 16:25 ?1088次閱讀