女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

如何使用雙極電機創建3點軸機械臂

454398 ? 來源:wv ? 2019-10-21 17:39 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

步驟1:原理圖和組件列表

如何使用雙極電機創建3點軸機械臂

這是我們在此項目中使用的完整原理圖和可用組件的概述。

包含的組件如下:

Berger Lahr雙極步進電機(已安裝在機械臂上)

Arduino UNO

PlayStation2游戲桿

Cyber 310機械臂

超聲波接近傳感器HC-SR04

面包板

PlayStation2 RC直升機的振動電機和轉子

EasyDriver 4.4步進電機驅動器

5V AC/DC電源

我們主要選擇這些組件是因為它們很容易為我們使用。我們還認為,與同班同學相比,使用更大的機械臂會很有趣。盡管我們意識到了這一點,但我們的野心超出了我們的能力。

步驟2:構造操作設備

我們焊接并連接了幾部分印刷品和許多電線,以便獲得適當的運行電路來控制我們的機械臂。

設計本身主要基于盡管在實際施工過程中進行了一些修改,但本節上面概述的概述中沒有提及。

步驟3:對其中的一些進行了實現,以實現超聲傳感器。

步驟3:機器人手臂的測試代碼

下面包含的機械手測試代碼

我們使用這段代碼來測試機械臂是否在實際工作,因為我們很難對完整代碼(包含在步驟6中)做出反應。該代碼的某些部分已過時,因為實際設備中未使用它。

#define step_pin 6 // Pin 6 connected to Steps pin on EasyDriver

#define dir_pin 7 // Pin 7 connected to Direction pin

//#define MS1 5 // Pin 5 connected to MS1 pin

//#define MS2 4 // Pin 4 connected to MS2 pin

#define SLEEP 10 // Pin 10 connected to SLEEP pin

#define X_pin A0 // Pin A0 connected to joystick x axis

int direction; // Variable to set Rotation (CW-CCW) of the motor

int steps = 1025; // Assumes the belt clip is in the Middle

void setup() {

// pinMode(MS1, OUTPUT);

// pinMode(MS2, OUTPUT);

pinMode(dir_pin, OUTPUT);

pinMode(step_pin, OUTPUT);

pinMode(SLEEP, OUTPUT);

digitalWrite(SLEEP, HIGH); // Wake up EasyDriver

delay(5); // Wait for EasyDriver wake up

/* Configure type of Steps on EasyDriver:

// MS1 MS2

//

// LOW LOW = Full Step //

// HIGH LOW = Half Step //

// LOW HIGH = A quarter of Step //

// HIGH HIGH = An eighth of Step //

*/

// digitalWrite(MS1, LOW); // Configures to Full Steps

// digitalWrite(MS2, LOW); // Configures to Full Steps

}

void loop() {

while (analogRead(X_pin) 》= 0 && analogRead(X_pin) 《= 100) {

if (steps 》 0) {

digitalWrite(dir_pin, HIGH); // (HIGH = anti-clockwise / LOW = clockwise)

digitalWrite(step_pin, HIGH);

delay(1);

digitalWrite(step_pin, LOW);

delay(1);

steps--;

}

}

while (analogRead(X_pin) 》 100 && analogRead(X_pin) 《= 400) {

if (steps 《 512) {

digitalWrite(dir_pin, HIGH); // (HIGH = anti-clockwise / LOW = clockwise)

digitalWrite(step_pin, HIGH);

delay(1);

digitalWrite(step_pin, LOW);

delay(1);

steps++;

}

if (steps 》 512) {

digitalWrite(dir_pin, HIGH);

digitalWrite(step_pin, HIGH);

delay(1);

digitalWrite(step_pin, LOW);

delay(1);

steps--;

}

}

while (analogRead(X_pin) 》 401 && analogRead(X_pin) 《= 600) {

if (steps 《 1025) {

digitalWrite(dir_pin, HIGH);

digitalWrite(step_pin, HIGH );

delay(1);

digitalWrite(step_pin, LOW);

delay(1);

steps++;

}

if (steps 》 1025) {

digitalWrite(dir_pin, HIGH);

digitalWrite(step_pin, HIGH);

delay(1);

digitalWrite(step_pin, LOW);

delay(1);

steps--;

}

}

while (analogRead(X_pin) 》 601 && analogRead(X_pin) 《= 900) {

if (steps 《 1535) {

digitalWrite(dir_pin, HIGH);

digitalWrite(step_pin, HIGH);

delay(1);

digitalWrite(step_pin, LOW);

delay(1);

steps++;

}

if (steps 》 1535) {

digitalWrite(dir_pin, HIGH);

digitalWrite(step_pin, HIGH);

delay(1);

digitalWrite(step_pin, LOW);

delay(1);

steps--;

}

}

while (analogRead(X_pin) 》 900 && analogRead(X_pin) 《= 1024) {

if (steps 《 2050) {

digitalWrite(dir_pin, HIGH);

digitalWrite(step_pin, HIGH);

delay(1);

digitalWrite(step_pin, LOW);

delay(1);

steps++;

}

}

}

步驟4:傳感器代碼

包括超聲波傳感器的代碼

為傳感器選擇的代碼經過構造,以便當風扇在以下范圍內注冊對象時風扇將運行。距回波點10至20厘米。

盡管我們同時更改了引腳和范圍,但物理構造仍基于上面的示意圖。

/*

HC-SR04 Ping distance sensor:

VCC to arduino 5v

GND to arduino GND

Echo to Arduino pin 8

Trig to Arduino pin 9

*/

#define echoPin 11 // Echo Pin

#define trigPin 12 // Trigger Pin

#define LEDPin 8 // Onboard LED

int maximumRange = 20; // Maximum range needed

int minimumRange = 10; // Minimum range needed

long duration, distance; // Duration used to calculate distance

void setup() {

Serial.begin (9600);

pinMode(trigPin, OUTPUT);

pinMode(echoPin, INPUT);

pinMode(LEDPin, OUTPUT); // Use LED indicator (if required)

}

void loop() {

/* The following trigPin/echoPin cycle is used to determine the

distance of the nearest object by bouncing soundwaves off of it. */

digitalWrite(trigPin, LOW);

delayMicroseconds(2);

digitalWrite(trigPin, HIGH);

delayMicroseconds(10);

digitalWrite(trigPin, LOW);

duration = pulseIn(echoPin, HIGH);

//Calculate the distance (in cm) based on the speed of sound.

distance = duration/58.2;

if (distance 》= maximumRange || distance 《= minimumRange){

/* Send a negative number to computer and Turn LED ON

to indicate “out of range” */

Serial.println(“fuckboy”);

digitalWrite(LEDPin, LOW);

}

else {

/* Send the distance to the computer using Serial protocol, and

turn LED OFF to indicate successful reading. */

Serial.println(distance);

digitalWrite(LEDPin, HIGH);

}

//Delay 50ms before next reading.

delay(50); }

步驟5:一點點視頻(和麻煩)

上面的精選視頻顯示了我們最大的問題之一。

我們根本沒有足夠的視頻電壓功率來運行機械臂本身。機器肯定在接收信號,但是它很小,甚至不能轉動旋鈕來驅動手臂的軸點。

主要問題集中在為機器人提供正確的電壓。電機,由于最大輸入功率之間的差異,您可以放心地將其輸入到Arduino和使實際電機本身正常運行所需的功率中。

步驟6:完整的主控制代碼

下面包含了機械手臂的完整代碼。

我們使用的代碼存在一些問題,但是由于我們在電壓功率方面也存在一些問題,如步驟5所述,我們很難對所有這些進行分類。應該注意的是,此部分代碼不包含傳感器的代碼。

#ifndef _stepLib_h_

#define _stepLib_h_

#include “Arduino.h”

// define our stepper class

class stepMotor {

public:

stepMotor(byte stepPin, byte dirPin); // our stepper object with variables stepPin and dirPin

void step(unsigned int stepFreq); // our stepping function which takes as an input our stepping frequency

private:

unsigned long _time; // current time

unsigned long _lastStepTime; // time at which we last stepped

unsigned long _stepPeriod; // time between a half period - this is the same as our delay(X) of part 1

byte _stepPin;

byte _dirPin;

boolean _stepCycle; // defines if we are on the HIGH or LOW side of our step cycle

};

#endif

#include “Arduino.h”

#include “stepLib.h”

// used for declaring our motor and initializing it

stepMotor::stepMotor(byte stepPin, byte dirPin) {

_stepPin = stepPin;

_dirPin = dirPin;

// define our digital pins as output

pinMode(_stepPin, OUTPUT);

pinMode(_dirPin, OUTPUT);

// initialize our digital pins to LOW

digitalWrite(_stepPin, LOW);

digitalWrite(_dirPin, LOW);

_stepCycle = false; // this keeps track of which end of the step cycle we are on: high or low

}

// function responsible for driving our digital pins high/low at the proper frequency

// input is the stepping frequency

void stepMotor::step(unsigned int stepFreq) {

_time = micros(); // get the current time

_stepPeriod = 1000000 / stepFreq; // get our step period (in micro-seconds) from the user given step frequency; we lose a bit of accuracy here since we‘ve defined _stepPeriod as an unsigned long instead of a float, but that’s ok.。.

// if the proper amount of time has passed, let‘s go ahead and proceed to the next half of our step cycle

if (_time 》= _lastStepTime + _stepPeriod) {

digitalWrite(_stepPin, _stepCycle == true); // a compact way of writing either HIGH/LOW to our step pin based on where we are on our step cycle

_stepCycle = !_stepCycle; // this simply flips our Boolean

_lastStepTime = _time; // update the time we last stepped

}

}

#include “stepLib.h”

// define a constant value named stepPin and assign the value 8 to it - this value will not change during our code

// this assumes digital pin 8 of your Arduino is attached to the step input of your driver

#define stepPin 9

// define a constant value named dirPin and assign the value 8 to it - this value will not change during our code

// this assumes digital pin 9 of your Arduino is attached to the step input of your driver

#define dirPin 8

// instantiate a new object in our stepMotor library named slider

// we are essentially declaring that we want to add a stepper motor named slider that has our defined stepPin and dirPin

stepMotor slider(stepPin, dirPin);

// setup() loop, the Arduino only runs through this once

void setup() {

}

// loop() loop, the Arduino continuously cycles through this as fast as it can

void loop() {

slider.step(50); // step our motor at a given frequency (Hz)

}

#include “stepLib.h”

// define our step pins

# define sliderStep 9

# define panStep 11

# define tiltStep 7

// define our direction pins

# define sliderDir 8

# define panDir 10

# define tiltDir 6

// instantiate a new object in our stepMotor library named slider

// we are essentially declaring that we want to add a stepper motor named slider that has our defined stepPin and dirPin

stepMotor slider(sliderStep, sliderDir);

stepMotor pan(panStep, panDir);

stepMotor tilt(tiltStep, tiltDir);

// setup() loop, the Arduino only runs through this once

void setup() {

}

// loop() loop, the Arduino continuously cycles through this as fast as it can

void loop() {

slider.step(50); // step our motor at a given frequency (Hz)

pan.step(10); // step our motor at a given frequency (Hz)

tilt.step(100); // step our motor at a given frequency (Hz)

}

#ifndef _stepLib_h_

#define _stepLib_h_

#include “Arduino.h”

// define our stepper class

class stepMotor {

public:

stepMotor(byte stepPin, byte dirPin); // our stepper object with variables stepPin and dirPin

void step(unsigned int stepFreq); // our stepping function which takes as an input our stepping frequency

void setDir(boolean dir); // function that allows us to set our direction of rotation

private:

unsigned long _time; // current time

unsigned long _lastStepTime; // time at which we last stepped

unsigned long _stepPeriod; // time between a half period - this is the same as our delay(X) of part 1

byte _stepPin;

byte _dirPin;

boolean _stepCycle; // defines if we are on the HIGH or LOW side of our step cycle

};

#endif

#include “Arduino.h”

#include “stepLib.h”

// used for declaring our motor and initializing it

stepMotor::stepMotor(byte stepPin, byte dirPin) {

_stepPin = stepPin;

_dirPin = dirPin;

// define our digital pins as output

pinMode(_stepPin, OUTPUT);

pinMode(_dirPin, OUTPUT);

// initialize our digital pins to LOW

digitalWrite(_stepPin, LOW);

digitalWrite(_dirPin, LOW);

_stepCycle = false; // this keeps track of which end of the step cycle we are on: high or low

}

// function responsible for driving our digital pins high/low at the proper frequency

// input is the stepping frequency

void stepMotor::step(unsigned int stepFreq) {

_time = micros(); // get the current time

_stepPeriod = 1000000 / stepFreq; // get our step period (in micro-seconds) from the user given step frequency; we lose a bit of accuracy here since we’ve defined _stepPeriod as an unsigned long instead of a float, but that‘s ok.。.

// if the proper amount of time has passed, let’s go ahead and proceed to the next half of our step cycle

if (_time 》= _lastStepTime + _stepPeriod) {

digitalWrite(_stepPin, _stepCycle == true); // a compact way of writing either HIGH/LOW to our step pin based on where we are on our step cycle

_stepCycle = !_stepCycle; // this simply flips our Boolean

_lastStepTime = _time; // update the time we last stepped

}

}

// given a boolean user input, set our direction of travel to that input

void stepMotor::setDir(boolean dir) {

digitalWrite(_dirPin, dir);

}

#include “stepLib.h”

// define our step pins

# define sliderStep 9

# define panStep 11

# define tiltStep 7

// define our direction pins

# define sliderDir 8

# define panDir 10

# define tiltDir 6

// define the pins on which we‘ve put our N.O. buttons

#define button1 2

#define button2 3

// our motor step frequencies

int sliderFreq = 300;

int panFreq = 10;

int tiltFreq = 100;

// instantiate a new object in our stepMotor library named slider

// we are essentially declaring that we want to add a stepper motor named slider that has our defined stepPin and dirPin

stepMotor slider(sliderStep, sliderDir);

stepMotor pan(panStep, panDir);

stepMotor tilt(tiltStep, tiltDir);

// setup() loop, the Arduino only runs through this once

void setup() {

// define our button pins as input pullup type - see http://arduino.cc/en/Tutorial/DigitalPins#.Uyphr4WN7q4

pinMode(button1, INPUT_PULLUP);

pinMode(button2, INPUT_PULLUP);

}

// loop() loop, the Arduino continuously cycles through this as fast as it can

void loop() {

if (digitalRead(button1) == LOW && digitalRead(button2) == HIGH) { // if button1 is pressed and button2 is not pressed

slider.setDir(true);

pan.setDir(true);

tilt.setDir(true);

} else if (digitalRead(button1) == HIGH && digitalRead(button2) == LOW) { // if btton1 is not pressed and button2 is pressed

slider.setDir(false);

pan.setDir(false);

tilt.setDir(false);

}

if (digitalRead(button1) == LOW || digitalRead(button2) == LOW) { // if either button is pressed

slider.step(sliderFreq); // step our motor at a given frequency (Hz)

pan.step(panFreq); // step our motor at a given frequency (Hz)

tilt.step(tiltFreq); // step our motor at a given frequency (Hz)

}

if (digitalRead(button1) == LOW && digitalRead(button2) == LOW) { // if both buttons are pressed together

sliderFreq += 10;

panFreq += 10;

tiltFreq += 10;

delay(10); // delay just a short while otherwise the double button presses causes our frequency to increase too quickly (we need to allow for the user to release the buttons)

}

}

#include “stepLib.h”

// define our step pins

# define sliderStep 9

# define panStep 11

# define tiltStep 7

// define our direction pins

# define sliderDir 8

# define panDir 10

# define tiltDir 6

// define the pins on which we’ve put our N.O. buttons

#define button1 2

#define button2 3

// define our joystick pins; NOTE we are using analog pins, not digital

#define LRjoystickPin 27 // left-right joystick

#define UDjoystickPin 28 // up-down joystick

// our motor step frequencies

int sliderFreq = 50;

int panFreq = 300;

int tiltFreq = 100;

// other variables

byte deadband = 50; // size of deadband, from joystick neutral position, in which we assume we are reading 0

unsigned int LRjoyValue = 0;

unsigned int UDjoyValue = 0;

// instantiate a new object in our stepMotor library named slider

// we are essentially declaring that we want to add a stepper motor named slider that has our defined stepPin and dirPin

stepMotor slider(sliderStep, sliderDir);

stepMotor pan(panStep, panDir);

stepMotor tilt(tiltStep, tiltDir);

// setup() loop, the Arduino only runs through this once

void setup() {

// define our button pins as input pullup type - see http://arduino.cc/en/Tutorial/DigitalPins#.Uyphr4WN7q4

pinMode(button1, INPUT_PULLUP);

pinMode(button2, INPUT_PULLUP);

pinMode(LRjoystickPin, INPUT);

pinMode(UDjoystickPin, INPUT);

}

// loop() loop, the Arduino continuously cycles through this as fast as it can

void loop() {

// read our joystick values and store them

LRjoyValue = analogRead(LRjoystickPin); // acts just like digitalRead, but for analog pins

UDjoyValue = analogRead(UDjoystickPin); // acts just like digitalRead, but for analog pins

// control our pan with the LR joystick

if (LRjoyValue 》 512+ deadband) { // joystick is outside of deadband, move right

pan.setDir(true);

pan.step(panFreq);

} else if (LRjoyValue 《 512- deadband) { // joystick is outside of deadband, move left

pan.setDir(false);

pan.step(panFreq);

}

// control our tilt with the UD joystick

if (UDjoyValue 》 512 + deadband) { // joystick is outside of deadband, move up

tilt.setDir(true);

tilt.step(panFreq);

} else if (UDjoyValue 《 512 - deadband) { // joystick is outside of deadband, move down

tilt.setDir(false);

tilt.step(panFreq);

}

// control our slider stepper with the two buttons, just like we did previously

if (digitalRead(button1) == LOW && digitalRead(button2) == HIGH) { // if button1 is pressed and button2 is not pressed

slider.setDir(true);

} else if (digitalRead(button1) == HIGH && digitalRead(button2) == LOW) { // if btton1 is not pressed and button2 is pressed

slider.setDir(false);

}

if (digitalRead(button1) == LOW || digitalRead(button2) == LOW) { // if either button is pressed

slider.step(sliderFreq); // step our motor at a given frequency (Hz)

}

}

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 電機
    +關注

    關注

    143

    文章

    9299

    瀏覽量

    149514
  • 機械臂
    +關注

    關注

    13

    文章

    554

    瀏覽量

    25397
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    海G32R501工業六機械參考方案釋放工業4.0產業價值

    揮著重要作用,是現代工業自動化和智能化生產的核心工具。據Grand View Research數據分析,2024年全球工業機器人市場規模約為340億美元,預計2025年至2030年將以9.9%的復合年增長率持續增長,展現出巨大的市場潛力。 海工業六
    發表于 06-23 13:52 ?1195次閱讀
    <b class='flag-5'>極</b>海G32R501工業六<b class='flag-5'>軸</b><b class='flag-5'>機械</b><b class='flag-5'>臂</b>參考方案釋放工業4.0產業價值

    GZCOM-NET:為機械測試帶來高效無線解決方案!

    在智慧工廠中,機械的性能和安全性需通過靜態與動態測試來保障。批量化測試時,后臺需實時顯示數據曲線和異常數據。GZCOM-NET憑借高效穩定的無線傳輸,為機械測試提供可靠方案。行業背
    的頭像 發表于 06-20 11:36 ?373次閱讀
    GZCOM-NET:為<b class='flag-5'>機械</b><b class='flag-5'>臂</b>測試帶來高效無線解決方案!

    電機為什么會產生電流?

    電機是現代工業中不可或缺的動力設備,廣泛應用于各種機械系統中。然而,在電機的運行過程中,有時會出現一種被稱為“電流”的現象,這種現象不僅會影響電機
    的頭像 發表于 06-07 16:14 ?268次閱讀
    <b class='flag-5'>電機</b>為什么會產生<b class='flag-5'>軸</b>電流?

    大象機器人攜手進迭時空推出 RISC-V 全棧開源六機械產品

    大象機器人成立于2016年,專注協作機器人研發與應用,產品線涵蓋輕量級協作機器人、人形機器人、仿生機器人等多種形態。拳頭產品myCobot系列以“全球最輕的六機械”聞名,累計銷量超數萬臺,覆蓋
    的頭像 發表于 06-06 16:55 ?536次閱讀
    大象機器人攜手進迭時空推出 RISC-V 全棧開源六<b class='flag-5'>軸</b><b class='flag-5'>機械</b><b class='flag-5'>臂</b>產品

    大象機器人攜手進迭時空推出 RISC-V 全棧開源六機械產品

    大象機器人成立于2016年,專注協作機器人研發與應用,產品線涵蓋輕量級協作機器人、人形機器人、仿生機器人等多種形態。拳頭產品myCobot系列以“全球最輕的六機械”聞名,累計銷量超數萬臺,覆蓋
    發表于 04-25 17:59

    電機控制的旋轉機械定轉子模態分析

    介紹了一種電機控制的旋轉機械結構。振動模態分析是電機優化設計的重要步驟,本文利用ANSYS有限元軟件對定轉子模態模型進行了詳細的計算和分析,得到了其模態固有頻率和振型。仿真結果對振
    發表于 04-24 21:07

    方案:伺服電機驅動控制器AGV、AMR專用伺服電機驅動控制器帶

    工業機器人數控機床XY機械機器人堆垛機專用伺服電機驅動控制器48V 14ARMS帶有
    發表于 02-15 12:14

    如何使用PLC控制myCobot 320機械

    根據持續的用戶反饋,目前市場對 PLC 與 myCobot 系統集成的需求很大,因此本文提供的案例介紹了如何使用 PLC(可編程邏輯控制器)來控制 myCobot 320 機械。本案例重點介紹
    的頭像 發表于 01-23 14:03 ?1156次閱讀
    如何使用PLC控制myCobot 320<b class='flag-5'>機械</b><b class='flag-5'>臂</b>

    機械的高效運作,連接器起關鍵作用

    了眾多危險、重復的工作。 機械的工作原理 ? ? ?機械的運動控制是通過控制電機和傳動裝置來實現的。控制
    的頭像 發表于 11-11 18:07 ?828次閱讀

    在單個C2000?MCU上使用FCL和SFRA進行電機控制

    電子發燒友網站提供《在單個C2000?MCU上使用FCL和SFRA進行電機控制.pdf》資料免費下載
    發表于 09-14 09:40 ?0次下載
    在單個C2000?MCU上使用FCL和SFRA進行<b class='flag-5'>雙</b><b class='flag-5'>軸</b><b class='flag-5'>電機</b>控制

    帶你了解中空步進電機作用

    ?中空步進電機的主要作用包括優化機械設計、方便布線及節約設計空間和生產成本,同時滿足特定的精度要求。 中空步進電機,也稱為空心軸步進
    的頭像 發表于 09-05 14:44 ?1190次閱讀
    帶你了解中空<b class='flag-5'>軸</b>步進<b class='flag-5'>電機</b>作用

    【原創】 drawbot 平面機械scara寫字畫畫機器人DIY教程貼

    /1CdGoDr8WFIMfic-iPf5Znw 提取碼:m1ov 項目簡介:桌面級scara機械,運動機構為兩個42步進電機和一個9g舵機,控制板為mega 2560 和ramps 1.4,其他部件主要為
    發表于 08-30 11:54

    OrangePi AIpro應用:機械應用開發指南

    2024世界人工智能大會上,香橙派攜OrangePiAIpro20T在世博展覽館H1-A301展區亮相,給大家帶來AI+互動的沉浸式體驗。其中,搭載OrangePiAIpro開發板的智能機械吸引了
    的頭像 發表于 08-19 16:42 ?1072次閱讀
    OrangePi AIpro應用:<b class='flag-5'>機械</b><b class='flag-5'>臂</b>應用開發指南

    工業機器人和機械的設計、功能和應用有哪些區別?

    機械是一種由多個關節連接而成的機械結構,類似于人的胳膊。它通常具有可旋轉或可伸縮的關節,使其能夠在空間中執行精確的定位和操作。機械通常由
    的頭像 發表于 08-16 09:43 ?1053次閱讀