女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

關于深度學習在各個領域的應用分析

MATLAB ? 來源:djl ? 2019-09-12 08:56 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

深度學習網絡作為一個功能多樣的工具,雖然最初僅用于圖像分析,但它已逐漸被應用到各種不同的任務和領域中。高準確性和高處理速度,使得用戶無需成為領域專家即可對大型數據集執行復雜分析。

小編邀請 MathWorks 產品經理 Johanna 分享一些深度學習網絡的使用示例以供參考:

文本分析

在本例中,我們將分析推特數據,了解針對特定詞或短語的情感是積極的還是消極的。情感分析有很多實際的應用,如品牌推廣、競選活動和廣告營銷。

過去(目前仍然)進行情感分析通常使用機器學習。機器學習模型可分析單個詞,但深度學習網絡可應用于完整的句子,大大地提高了準確性。

訓練組由數以千計正面或負面的推特樣本組成。這里是訓練示例:

關于深度學習在各個領域的應用分析

我們通過去除“the”和“and”等“停滯詞”對數據進行了清理,這些詞對于算法的學習毫無用處。然后,我們上傳了長短期記憶(longshort-term memory, LSTM)網絡,它是一種遞歸神經網絡(recurrent neural network, RNN),可學習時間上的依賴關系。

LSTM 擅長對序列和時序數據進行分類。當分析文本時,LSTM 不僅會考慮單個詞,還會考慮句子結構和詞的組合。

網絡本身的 MATLAB 代碼非常簡單:

layers = [ sequenceInputLayer(inputSize)

lstmLayer(outputSize,'OutputMode','last')

fullyConnectedLayer(numClasses)

softmaxLayer

classificationLayer ]

GPU 上運行時,它訓練的非常快速,30 次迭代(完整遍歷一次所有數據)只需 6 分鐘。

完成對模型的訓練后,我們就可對新數據使用該模型。例如:我們可用它確定情感分數與股票價格之間是否相關。

語音識別

在本例中,我們需要將語音音頻文件分類到其對應的詞類。初看上去,此問題與圖像分類完全不同,但實則非常相似。頻譜是 1D 音頻文件中信號的二維顯示(圖 1)。我們可以將其用作對卷積神經網絡(CNN)的輸入,如同使用“真實”圖像一樣。

關于深度學習在各個領域的應用分析

圖1. 上部:原始音頻信號。底部:對應頻譜。

spectrogram() 函數是一種將音頻文件轉換為其對應時頻的簡單方式。但是,語音是音頻處理的一種特定形式,其中重要特征會包含在特定的頻率處。由于我們希望 CNN 專注于這些特定的頻率處,我們將使用美爾倒譜系數,該系數會鎖定跟語音最相關的頻率區域。

我們在希望分類的詞類之間均勻地分配訓練數據。

為減少偽正面情感,我們納入了容易與目標類別混淆的詞類。例如,如果目標詞是“on”,則“mom”、“dawn”和“won”等詞會放到“未知”類別中。網絡不需要知道這些詞是什么,只需要知道它們不是目標詞。

我們隨后定義了一個 CNN。由于我們使用頻譜作為輸入值,因此 CNN 的結構可以是類似于用于圖像的結構。

模型訓練完畢后,它會將輸入圖像(頻譜圖)分類到相應的類別(圖2)。驗證集的準確性約為96%。

關于深度學習在各個領域的應用分析

圖2. 詞“yes”的分類結果。

圖像降噪

小波和濾波器是(仍然是)降噪的常見方法。在本例中,我們將了解到經過預訓練的圖像降噪 CNN(DnCNN) 將如何應用于包含高斯噪聲的一組圖像中(圖 3)。

圖3. 添加了高斯噪聲的原始圖像。

我們首先下載一個包含高斯噪聲的圖像。

imshow(noisyRGB);

由于這是彩色圖像,但網絡是在灰階圖像上受訓的,因此該過程的唯一難點是需要將圖像分為三個不同通道:紅(R)、綠(G)、藍(B)。

oisyR = noisyRGB(:,:,1);

noisyG = noisyRGB(:,:,2);

noisyB = noisyRGB(:,:,3);

加載預先訓練的 DnCNN 網絡:

net= denoisingNetwork('dncnn');

現在我們可以使用它去除每個顏色通道中的噪聲。

denoisedR = denoiseImage(noisyR,net);

denoisedG = denoiseImage(noisyG,net);

denoisedB =denoiseImage(noisyB,net);

重新組合經過降噪處理的顏色通道,形成降噪后的 RGB 圖像。

denoisedRGB =cat(3,denoisedR,denoisedG,denoisedB);

imshow(denoisedRGB)

title('Denoised Image')

原始(非噪聲)圖像與降噪圖像的快速視覺對比圖說明結果是合理的(圖 4)。

圖4. 左:原始(非噪音)圖像。右:已降噪圖像。

讓我們放大幾個細節:

rect = [120 440 130 130];

cropped_orig = imcrop(RGB,rect);

cropped_denoise = imcrop(denoisedRGB,rect);

imshowpair(cropped_orig,cropped_denoise,'montage');

圖 5 中的放大視圖顯示降噪結果造成了一些負面影響。顯而易見,原始(非噪聲)圖像具有更高的清晰度,尤其是屋頂和草地。這一結果可能是可接受的,或者圖像需要進一步處理,這取決于它將用于哪些應用。

圖5. 放大視圖。

如果考慮使用 DnCNN 進行圖像降噪,請記住,它只能識別其接受過訓練的噪聲類型,在本例中是高斯噪聲。為提高靈活性,您可以使用 MATLAB 和 Deep Learning Toolbox 通過預定義層訓練自己的網絡,也可以訓練完全自定義的降噪神經網絡。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 噪聲
    +關注

    關注

    13

    文章

    1140

    瀏覽量

    48133
  • 音頻
    +關注

    關注

    30

    文章

    3042

    瀏覽量

    83439
  • 深度學習
    +關注

    關注

    73

    文章

    5561

    瀏覽量

    122793
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    OpenVINO?工具套件的深度學習工作臺中無法導出INT8模型怎么解決?

    無法 OpenVINO? 工具套件的深度學習 (DL) 工作臺中導出 INT8 模型
    發表于 03-06 07:54

    軍事應用中深度學習的挑戰與機遇

    ,并廣泛介紹了深度學習兩個主要軍事應用領域的應用:情報行動和自主平臺。最后,討論了相關的威脅、機遇、技術和實際困難。主要發現是,人工智能技術并非無所不能,需要謹慎應用,同時考慮到其局
    的頭像 發表于 02-14 11:15 ?537次閱讀

    AI自動化生產:深度學習質量控制中的應用

    隨著科技的飛速發展,人工智能(AI)與深度學習技術正逐步滲透到各個行業,特別是自動化生產中,其潛力與價值愈發凸顯。深度
    的頭像 發表于 01-17 16:35 ?693次閱讀
    AI自動化生產:<b class='flag-5'>深度</b><b class='flag-5'>學習</b><b class='flag-5'>在</b>質量控制中的應用

    zeta機器學習中的應用 zeta的優缺點分析

    探討ZETA機器學習中的應用以及ZETA的優缺點時,需要明確的是,ZETA一詞不同領域可能有不同的含義和應用。以下是根據不同
    的頭像 發表于 12-20 09:11 ?1124次閱讀

    GPU深度學習中的應用 GPUs圖形設計中的作用

    隨著人工智能技術的飛速發展,深度學習作為其核心部分,已經成為推動技術進步的重要力量。GPU(圖形處理單元)深度學習中扮演著至關重要的角色,
    的頭像 發表于 11-19 10:55 ?1618次閱讀

    NPU深度學習中的應用

    隨著人工智能技術的飛速發展,深度學習作為其核心驅動力之一,已經眾多領域展現出了巨大的潛力和價值。NPU(Neural Processing Unit,神經網絡處理單元)是專門為
    的頭像 發表于 11-14 15:17 ?1907次閱讀

    pcie深度學習中的應用

    深度學習模型通常需要大量的數據和強大的計算能力來訓練。傳統的CPU計算資源有限,難以滿足深度學習的需求。因此,GPU(圖形處理單元)和TPU(張量處理單元)等專用硬件應運而生,它們通過
    的頭像 發表于 11-13 10:39 ?1344次閱讀

    GPU深度學習應用案例

    GPU深度學習中的應用廣泛且重要,以下是一些GPU深度學習應用案例: 一、圖像識別 圖像識別是深度
    的頭像 發表于 10-27 11:13 ?1353次閱讀

    激光雷達技術的基于深度學習的進步

    信息。這使得激光雷達自動駕駛、無人機、機器人等領域具有廣泛的應用前景。 二、深度學習技術的發展 深度
    的頭像 發表于 10-27 10:57 ?1063次閱讀

    FPGA加速深度學習模型的案例

    FPGA(現場可編程門陣列)加速深度學習模型是當前硬件加速領域的一個熱門研究方向。以下是一些FPGA加速深度學習模型的案例: 一、基于FPG
    的頭像 發表于 10-25 09:22 ?1225次閱讀

    AI大模型與深度學習的關系

    AI大模型與深度學習之間存在著密不可分的關系,它們互為促進,相輔相成。以下是對兩者關系的介紹: 一、深度學習是AI大模型的基礎 技術支撐 :深度
    的頭像 發表于 10-23 15:25 ?2882次閱讀

    【「嵌入式Hypervisor:架構、原理與應用」閱讀體驗】+全文學習心得

    景和需求,選擇合適的特性和策略,以實現最佳的系統性能和資源利用率。 三、實際應用與案例分析 書籍的后半部分,我深入學習了嵌入式Hypervisor
    發表于 10-09 19:11

    FPGA做深度學習能走多遠?

    。FPGA的優勢就是可編程可配置,邏輯資源多,功耗低,而且賽靈思等都在極力推廣。不知道用FPGA做深度學習未來會怎樣發展,能走多遠,你怎么看。 A:FPGA 深度
    發表于 09-27 20:53

    深度識別算法包括哪些內容

    :CNN是深度學習中處理圖像和視頻等具有網格結構數據的主要算法。它通過卷積層、池化層和全連接層等組件,實現對圖像特征的自動提取和識別。 應用領域 :CNN圖像識別、目標檢測、視頻
    的頭像 發表于 09-10 15:28 ?840次閱讀

    深度識別人臉識別有什么重要作用嗎

    安全監控領域深度學習人臉識別技術可以用于實時監控和分析視頻流,以識別特定的個人或行為模式。這對于防止犯罪、保護財產和人員安全至關重要。 2. 身份驗證
    的頭像 發表于 09-10 14:55 ?1138次閱讀