負(fù)的另外半波的整流電壓。 如此重復(fù)下去,結(jié)果在Rfz 上便得到全波整流電壓。其波形圖和全波整流波形圖是一樣的。從圖中還不難看出,橋式電路中每只二極管承受的反向電壓等于變壓器次級電壓的最大值,比全波
2018-10-15 15:59:10
電阻低,通道電阻高,因此具有驅(qū)動電壓即柵極-源極間電壓Vgs越高導(dǎo)通電阻越低的特性。下圖表示SiC-MOSFET的導(dǎo)通電阻與Vgs的關(guān)系。導(dǎo)通電阻從Vgs為20V左右開始變化(下降)逐漸減少,接近
2018-11-30 11:34:24
Si-MOSFET大得多。而在給柵極-源極間施加18V電壓、SiC-MOSFET導(dǎo)通的條件下,電阻更小的通道部分(而非體二極管部分)流過的電流占支配低位。為方便從結(jié)構(gòu)角度理解各種狀態(tài),下面還給出了MOSFET的截面圖
2018-11-27 16:40:24
1. 器件結(jié)構(gòu)和特征 Si材料中越是高耐壓器件,單位面積的導(dǎo)通電阻也越大(以耐壓值的約2~2.5次方的比例增加),因此600V以上的電壓中主要采用IGBT(絕緣柵極雙極型晶體管)。 IGBT
2023-02-07 16:40:49
采用IGBT這種雙極型器件結(jié)構(gòu)(導(dǎo)通電阻變低,則開關(guān)速度變慢),就可以實(shí)現(xiàn)低導(dǎo)通電阻、高耐壓、快速開關(guān)等各優(yōu)點(diǎn)兼?zhèn)涞钠骷?. VD - ID特性SiC-MOSFET與IGBT不同,不存在開啟電壓,所以
2019-04-09 04:58:00
作的。全橋式逆變器部分使用了3種晶體管(Si IGBT、第二代SiC-MOSFET、上一章介紹的第三代溝槽結(jié)構(gòu)SiC-MOSFET),組成相同尺寸的移相DCDC轉(zhuǎn)換器,就是用來比較各產(chǎn)品效率的演示機(jī)
2018-11-27 16:38:39
)可能會嚴(yán)重影響全局開關(guān)損耗。針對此,在SiC MOSFET中可以加入米勒箝位保護(hù)功能,如圖3所示,以控制米勒電流。當(dāng)電源開關(guān)關(guān)閉時,驅(qū)動器將會工作,以防止因柵極電容的存在,而出現(xiàn)感應(yīng)導(dǎo)通的現(xiàn)象。圖3
2019-07-09 04:20:19
柵極電壓,在20V柵極電壓下從幾乎300A降低到12V柵極電壓時的130A左右。即使碳化硅MOSFET的短路耐受時間短于IGTB的短路耐受時間,也可以通過集成在柵極驅(qū)動器IC中的去飽和功能來保護(hù)SiC
2019-07-30 15:15:17
的快速充電器等的功率因數(shù)校正電路(PFC電路)和整流橋電路中。2. SiC-SBD的正向特性SiC-SBD的開啟電壓與Si-FRD相同,小于1V。開啟電壓由肖特基勢壘的勢壘高度決定,通常如果將勢壘高度
2019-03-14 06:20:14
采用IGBT這種雙極型器件結(jié)構(gòu)(導(dǎo)通電阻變低,則開關(guān)速度變慢),就可以實(shí)現(xiàn)低導(dǎo)通電阻、高耐壓、快速開關(guān)等各優(yōu)點(diǎn)兼?zhèn)涞钠骷?. VD - ID特性SiC-MOSFET與IGBT不同,不存在開啟電壓,所以
2019-05-07 06:21:55
SiC-MOSFET的構(gòu)成中,SiC-MOSFET切換(開關(guān))時高邊SiC-MOSFET的柵極電壓產(chǎn)生振鈴,低邊SiC-MOSFET的柵極電壓升高,SiC-MOSFET誤動作的現(xiàn)象。通過下面的波形圖可以很容易了解這是
2018-11-30 11:31:17
免 MOSFET 的誤工作,但這種寄生電感的影響是三種主要寄生電感中最小的。整個器件的過沖電壓通常由功率回路電感(有時也稱為開關(guān)回路電感)造成,而這會產(chǎn)生高開關(guān)損耗。共源極電感會在開關(guān)瞬變過程中產(chǎn)生對柵極驅(qū)動
2022-03-24 18:03:24
IGBT/功率MOSFET是一種電壓控制型器件,可用作電源電路、電機(jī)驅(qū)動器和其它系統(tǒng)中的開關(guān)元件。柵極是每個器件的電氣隔離控制端。MOSFET的另外兩端是源極和漏極,而對于IGBT,它們被稱為集電極
2021-01-27 07:59:24
摘要IGBT/功率MOSFET是一種電壓控制型器件,可用作電源電路、電機(jī)驅(qū)動器和其它系統(tǒng)中的開關(guān)元件。柵極是每個器件的電氣隔離控制端。MOSFET的另外兩端是源極和漏極,而對于IGBT,它們被稱為
2021-07-09 07:00:00
可以理解成半橋就是在拓?fù)渖希讶?b class="flag-6" style="color: red">橋拓?fù)淙∑湟话雴幔咳绻?b class="flag-6" style="color: red">橋是2個橋臂4個開關(guān)管,那么半橋就是1個橋臂2個開關(guān)管?推挽電路和半橋電路是等價的嗎?還有橋式電路也分橋式整流和橋式逆變吧?謝謝!
2020-07-20 08:10:11
,而這個電流并沒有通過變壓器負(fù)載。因此,在兩個控制開關(guān)K1和K2同時處于過渡過程期間,兩個開關(guān)器件將會產(chǎn)生很大的功率損耗。為了降低控制開關(guān)過渡過程產(chǎn)生的損耗,一般在半橋式開關(guān)電源電路中,都有意讓兩個
2019-05-15 10:57:12
的產(chǎn)生機(jī)理 由功率MOSFET的等效電路可知,3個極間均存在結(jié)電容,柵極輸入端相當(dāng)于一個容性網(wǎng)絡(luò),驅(qū)動電路存在著分布電感和驅(qū)動電阻,此時的橋式逆變電路如圖1所示。以上管開通過程為例,當(dāng)下管V2已經(jīng)完全
2018-08-27 16:00:08
克服了全波整流電路要求變壓器次級有中心抽頭和二極管承受反壓大的缺點(diǎn),但多用了兩只二極管。在半導(dǎo)體器件發(fā)展快,成本較低的今天,此缺點(diǎn)并不突出,因而橋式整流電路在實(shí)際中應(yīng)用較為廣泛。 (520101)
2021-05-13 07:31:16
,只要增加兩只二極管口連接成"橋"式結(jié)構(gòu),便具有全波整流電路的優(yōu)點(diǎn),而同時在一定程度上克服了它的缺點(diǎn)。橋式整流二極管的作用:1、將交流發(fā)電機(jī)產(chǎn)生的交流電變?yōu)橹绷麟姡詫?shí)現(xiàn)向用電設(shè)備
2017-12-09 11:26:40
便得到全波整流電壓。其波形圖和全波整流波形圖是一樣的。從下圖中不難看出,橋式電路中每只二極管承受的反向電壓等于變壓器次級電壓的最大值,比全波整流電路小一半。橋式整流電路 橋式整流器的作用及選擇 橋
2011-10-20 11:09:52
`編輯-ZD45XT80整流橋是將整流管密封在一個外殼中,D45XT80全橋是將所連接的橋式整流電路的六個二極管密封在一起,構(gòu)成一個橋式全波整流電路。下面是D45XT80的詳細(xì)參數(shù)和圖片
2021-07-15 14:34:02
于開關(guān)狀態(tài)下的漏源間電壓的突變會通過極間電容耦合到柵極而產(chǎn)生相當(dāng)幅度的VCS脈沖電壓.這一電壓會引起柵源擊穿造成管子的永久損壞,如果是正方向的VCS脈沖電壓,雖然達(dá)不到損壞器件的程度,但會導(dǎo)致器件
2009-08-20 18:24:15
,A點(diǎn)的電壓就是一個方波,最大值是12V+VBAT,最小值是12V(假設(shè)二極管為理想二極管)。A點(diǎn)的方波經(jīng)過簡單的整流濾波,可提供高于12V的電壓,在驅(qū)動控制電路中,H橋由4個N溝道功率MOSFET
2020-07-15 17:35:23
IGBT在半橋式電機(jī)控制中的使用IGBT的特性和功能在直流電壓為600V及以上的變流系統(tǒng)如交流電機(jī)、變頻器、開關(guān)電源、照明電路、牽引傳動等領(lǐng)域有著廣泛的應(yīng)用。IGBT,也就是絕緣柵雙極型晶體管,是由
2015-12-30 09:27:49
電路應(yīng)運(yùn)而生。LLC諧振變換器能夠在較寬的電源和負(fù)載波動范圍內(nèi)調(diào)節(jié)輸出,而開關(guān)頻率波動卻較小。在整個工作范圍內(nèi),能夠獲得零電壓開關(guān)(ZVS)半橋LLC諧振變換器LLC電路MOSFET應(yīng)用不同于PFC
2019-09-17 09:05:04
MOS管的開關(guān)電路中柵極電阻R5和柵源極級間電阻R6是怎么計算的?在這個電路中有什么用。已知道VDD=3.7V,在可變電阻狀態(tài)中,作為開關(guān)電路是怎么計算R5和R6?
2021-04-19 00:07:09
使用,BM6101是一款電流隔離芯片,通過它進(jìn)行兩級驅(qū)動Mosfet管。而驅(qū)動的電壓就是通過開關(guān)電源調(diào)整得到的電壓,驅(qū)動電路還如下圖黃框出提供了死區(qū)調(diào)整的電阻網(wǎng)絡(luò)。利用示波器在在這時對柵極源極電壓
2020-06-07 15:46:23
。碳化硅有優(yōu)點(diǎn)相當(dāng)突出。是半導(dǎo)體公司兵家必爭之地。應(yīng)用場景;評估板采用常見的半橋電路配置,并配有驅(qū)動電路、驅(qū)動電源、過電流保護(hù)電路及柵極信號保護(hù)電路等評估板的主要特點(diǎn)如下:? 可評估 TO-247-4L
2020-07-26 23:24:05
,Mosfet管的柵極輸入端相當(dāng)于是一個容性網(wǎng)絡(luò),因此器件在穩(wěn)定導(dǎo)通時間或者關(guān)斷的截止時間并不需要驅(qū)動電流,但是在器件開關(guān)過程中,柵極的輸入電容需要充電和放電,此時柵極驅(qū)動電路必須提供足夠大的充放電脈沖電流
2020-07-16 14:55:31
要的通道間時序匹配和停滯時間。另一問題是,高壓柵極驅(qū)動器并無電流隔離,而是依賴IC的結(jié)隔離來分離高端驅(qū)動電壓和低端驅(qū)動電壓。在低端開關(guān)事件中,電路中的寄生電感可能導(dǎo)致輸出電壓VS降至地電壓以下。發(fā)生這種
2018-07-03 16:33:25
整流器配置中的四個二極管是對AC電壓進(jìn)行整流的最簡單、也是最常規(guī)的方法。在一個橋式整流器中運(yùn)行一個二極管可以為全橋整流器和汽車用交流發(fā)電機(jī)提供一個簡單、劃算且零靜態(tài)電流的解決方案。不過,雖然二極管通常
2018-09-03 15:32:01
時,VT2管的柵極通過晶體管V3獲得電壓和電流,充電能力提高,因而開通速度加快。b.保護(hù)功能圖2虛線框中,1N4744是柵源間的過壓保護(hù)齊納二極管,其穩(wěn)壓值為15 V。由于,功率MOSFET管柵源間的阻抗
2020-08-25 14:11:27
的電感和電容之外的雜散電感和電容。需要認(rèn)識到,SiC MOSFET 的輸出開關(guān)電流變化率 (di/dt) 遠(yuǎn)高于 Si MOSFET。這可能增加直流總線的瞬時振蕩、電磁干擾以及輸出級損耗。高開關(guān)速度還可能導(dǎo)致電壓過沖。滿足高電壓應(yīng)用的可靠性和故障處理性能要求。
2017-12-18 13:58:36
到交流電路時,它可以使電路中的電流只向一個方向流動。 ASEMI整流橋通常由單相橋式全波整流器的4個二極管組成和三相橋式全波整流器的6個二極管組成(ASEMI廠家都將其封裝在一個器件中,統(tǒng)稱為整流橋,方便
2021-10-14 16:12:29
什么是單相橋式整流電路:電路中采用四個二極管,互相接成橋式結(jié)構(gòu)。利用二極管的電流導(dǎo)向作用,在交流輸入電壓U2的正半周內(nèi),二極管D1、D3導(dǎo)通,D2、D4截止,在負(fù)載RL上得到上正下負(fù)的輸出電壓;在負(fù)
2021-07-06 06:03:14
,基本保持不變。這些都是基于橋式電路解決漏電流的方法,近年來出現(xiàn)了一種雙Buck逆變器結(jié)構(gòu),這種逆變器具有無橋臂直通,體二極管不工作,雙極性工作等突出特點(diǎn),因而應(yīng)用廣泛。本文提出一種新型的三電平雙
2018-09-28 16:28:02
和CN4的+18V、CN3和CN6的-3V為驅(qū)動器的電源。電路中增加了CGS和米勒鉗位MOSFET,使包括柵極電阻在內(nèi)均可調(diào)整。將該柵極驅(qū)動器與全SiC功率模塊的柵極和源極連接,來確認(rèn)柵極電壓的升高情況
2018-11-27 16:41:26
的平均電流(即正向電流)為:ID=1/2 IL=1/2*UL/RL =0.45*U2/RL加在二極管兩端的反向電壓為:URM=2E2=2√2*U2二、橋式整流電路橋式整流電路輸入電壓E2為正半周時,對D1
2023-02-20 09:11:33
柵極(Gate),漏極(Drain)和源極(Source)。功率MOSFET為電壓型控制器件,驅(qū)動電路簡單,驅(qū)動的功率小,而且開關(guān)速度快,具有高的工作頻率。常用的MOSFET的結(jié)構(gòu)有橫向雙擴(kuò)散型
2016-10-10 10:58:30
功率MOSFET的結(jié)構(gòu)特點(diǎn)為什么要在柵極和源極之間并聯(lián)一個電阻呢?
2021-03-10 06:19:21
通過變壓器負(fù)載。因此,在兩個控制開關(guān)K1和K2同時處于過渡過程期間,兩個開關(guān)器件將會產(chǎn)生很大的功率損耗。為了降低控制開關(guān)過渡過程產(chǎn)生的損耗,一般在半橋式開關(guān)電源電路中,都有意讓兩個控制開關(guān)的接通和截止
2018-10-12 16:37:43
光耦合隔離器不會產(chǎn)生這種情況。為緩沖器供電的最直觀的方法,是為半橋的每一個浮動區(qū)域提供專用的隔離式DC-DC轉(zhuǎn)換器。對于多引腳系統(tǒng),低端柵極驅(qū)動器可以共享一個電壓源,只要有足夠的電流輸出即可,如圖2中
2018-10-16 13:52:11
單相橋式整流電路輸出電壓的波形是怎樣的?三相鼠籠式異步電動機(jī)定子的繞組彼此互差多少的電角度呢?動力控制電路通電測試的最終目的是什么?
2021-09-18 07:22:03
什么是單相橋式整流電路: 電路中采用四個二極管,互相接成橋式結(jié)構(gòu)。利用二極管的電流導(dǎo)向作用,在交流輸入電壓U2的正半周內(nèi),二極管D1、D3導(dǎo)通,D2、D4截止,在負(fù)載RL上得到上正下負(fù)的輸出
2018-10-15 16:36:20
,導(dǎo)致Cp上的電壓降低。反激開關(guān)MOSFET 源極流出的電流(Is)波形的轉(zhuǎn)折點(diǎn)的分析。 很多工程師在電源開發(fā)調(diào)試過程中,測的的波形的一些關(guān)鍵點(diǎn)不是很清楚,下面針對反激電源實(shí)測波形來分析一下。問題一
2018-10-10 20:44:59
用的MOSFET必須具有一個小于等于3V的柵源電壓 (VGS) 閥值,以及低柵極電容。另外一個重要的電氣參數(shù)是MOSFET體二極管上的電壓,這個值必須在低輸出電流時為0.48V左右。德州儀器 (TI) 60V
2018-05-30 10:01:53
時,光耦輸出三極管集電極為低電平,功放電路中三極管Q1截止、Q2導(dǎo)通,施加在IGBT柵極與發(fā)射極之間電壓為-9V,IGBT關(guān)斷。4、電源試驗(yàn)圖5(a)、(b)分別是輸出電流45A時全橋變換器兩個橋臂中點(diǎn)A
2018-10-19 16:38:40
和K2、K3同時處于過渡過程期間,4個開關(guān)器件將會產(chǎn)生很大的功率損耗。為了降低控制開關(guān)過渡過程產(chǎn)生的損耗,一般在全橋式開關(guān)電源電路中,都有意讓兩組控制開關(guān)的接通和截止時間錯開一小段時間。 4結(jié)論
2018-09-28 10:07:25
3所示,在基本無橋Boost APFC 電路上增加兩個快恢復(fù)二極管VD3和VD4. 圖3中,電阻Rs 為電感中的電流檢測電阻,使電流檢測電路減化。雖然Rs 在工作時會產(chǎn)生一定損耗,但只要阻值選擇
2018-09-28 16:29:47
來設(shè)置單極或雙極 PWM 柵極驅(qū)動器延遲時間短,上升和下降時間短提供用于驅(qū)動半橋的信號和電源反激式恒定導(dǎo)通時間,無需環(huán)路補(bǔ)償可以在 24V±20% 范圍內(nèi)寬松調(diào)節(jié)輸入此電路設(shè)計經(jīng)過測試并包含測試結(jié)果
2018-12-21 11:39:19
IGBT和SiC MOSFET的電壓源驅(qū)動和電流源驅(qū)動的dv/dt比較。VSD中的柵極電阻表示為Rg,控制CSD柵極電流的等效電阻表示為R奧特雷夫。 從圖中可以明顯看出,在較慢的開關(guān)速度(dv/dt
2023-02-21 16:36:47
MOSFET一般工作在橋式拓?fù)?b class="flag-6" style="color: red">結(jié)構(gòu)模式下,如圖1所示。由于下橋MOSFET驅(qū)動電壓的參考點(diǎn)為地,較容易設(shè)計驅(qū)動電路,而上橋的驅(qū)動電壓是跟隨相線電壓浮動的,因此如何很好地驅(qū)動上橋MOSFET成了設(shè)...
2021-07-27 06:44:41
) MOSFET很難在圖騰柱PFC拓?fù)?b class="flag-6" style="color: red">中的連續(xù)導(dǎo)通模式(CCM)下工作,因?yàn)轶w二極管的反向恢復(fù)特性很差。碳化硅(SiC) MOSFET采用全新的技術(shù),比Si MOSFET具有更勝一籌的開關(guān)性能、極小
2022-04-19 08:00:00
高壓驅(qū)動器電路來實(shí)現(xiàn)所需要的通道間時序匹配和停滯時間。另一問題是,高壓柵極驅(qū)動器并無電流隔離,而是依賴IC的結(jié)隔離來分離高端驅(qū)動電壓和低端驅(qū)動電壓。在低端開關(guān)事件中,電路中的寄生電感可能導(dǎo)致輸出電壓VS
2018-10-23 11:49:22
的一個潛在問題是,僅有一個隔離輸入通道,而且依賴高壓驅(qū)動器來提供通道間所需的時序匹配以及應(yīng)用所需的死區(qū)。另一問題是,高壓柵極驅(qū)動器并無電流隔離,而是依賴結(jié)隔離來分離同一IC中的上橋臂驅(qū)動電壓和下橋臂驅(qū)動
2018-10-16 16:00:23
電路來實(shí)現(xiàn)所需要的通道間時序匹配和停滯時間。另一問題是,高壓柵極驅(qū)動器并無電流隔離,而是依賴IC的結(jié)隔離來分離高端驅(qū)動電壓和低端驅(qū)動電壓。在低端開關(guān)事件中,電路中的寄生電感可能導(dǎo)致輸出電壓VS降至地電壓
2018-09-26 09:57:10
中,它又分為全橋與半橋。 全橋是由4只整流二極管按橋式全波整流電路的形式連接并封裝為一體構(gòu)成的,圖是其外形。 全橋的正向電流有0.5A、1A、1.5A、2A、2.5A、3A、5A、10A、20A
2018-11-28 11:05:12
整流橋是利用二極管的特性“單向?qū)щ娦浴保瑢?shí)現(xiàn)正向電流時導(dǎo)通負(fù)向電流關(guān)斷,從而達(dá)到交流變直流的整流效果。一、整流橋介紹:整流橋就是將整流管封在一個殼內(nèi)了。分全橋和半橋。全橋是將連接好的橋式整流電路
2015-11-27 18:09:57
觸發(fā)脈沖。 最簡單的單脈沖晶閘管相控整流電路如圖1.2所示,控制觸發(fā)脈沖施加的時間就可以控制輸出電壓。2.單相橋式全控整流電路單相橋式全控整流電路的原理和以及在阻性負(fù)載情況下的...
2021-09-16 08:05:54
流過漏極和柵極之間的電容并流出柵極。驅(qū)動器必須能夠接受此電流。這也是為什么外部柵極電阻必須由快速二極管并聯(lián)以防止該電流在電阻兩端產(chǎn)生過高電壓的原因之一。對于中型MOSFET,1 N 4150 可以完成
2023-02-20 16:40:52
開路整流電路沒有直流電壓輸出。這是因?yàn)?b class="flag-6" style="color: red">橋式整流電路中各整流二極管的電流不能構(gòu)成回路,整流電路無法正常工作。任一只二極管開路整流電路所輸出的單向脈動直流電壓下降一半。這是因?yàn)榻涣鬏斎?b class="flag-6" style="color: red">電壓的正半周或負(fù)半周
2011-12-15 15:04:58
穩(wěn)壓值為15 V.由于,功率MOSFET管柵源間的阻抗很高,故工作于開關(guān)狀態(tài)下的漏源間電壓的突變會通過極間電容耦合到柵極而產(chǎn)生相當(dāng)幅度的VCS脈沖電壓.這一電壓會引起柵源擊穿造成管子的永久損壞,如果是
2008-10-21 00:50:02
和 –4V 輸出電壓以及 1W(...)主要特色用于在半橋配置中驅(qū)動 SiC MOSFET 的緊湊型雙通道柵極驅(qū)動器解決方案4A 峰值拉電流和 6A 峰值灌電流驅(qū)動能力,適用于驅(qū)動 SiC
2018-10-16 17:15:55
本章將介紹最新的第三代SiC-MOSFET,以及可供應(yīng)的SiC-MOSFET的相關(guān)信息。獨(dú)有的雙溝槽結(jié)構(gòu)SiC-MOSFET在SiC-MOSFET不斷發(fā)展的進(jìn)程中,ROHM于世界首家實(shí)現(xiàn)了溝槽柵極
2018-12-05 10:04:41
SiCMOSFET具有出色的開關(guān)特性,但由于其開關(guān)過程中電壓和電流變化非常大,因此如Tech Web基礎(chǔ)知識 SiC功率元器件“SiC MOSFET:橋式結(jié)構(gòu)中柵極-源極間電壓的動作-前言”中介
2022-09-20 08:00:00
及原理 本充電器電路主要由市電整流濾波、自激加他激半橋轉(zhuǎn)換、PWM控制、電壓控制、電流控制、輸出整流濾波及顯示六部分組成。 整流濾波 市電220V/50Hz經(jīng)二極管D1~D4橋式整流、電容C5~C7
2011-01-12 10:33:10
柵極處獲得 20V,以便在最小 RDSon 時導(dǎo)通。 當(dāng)以0V關(guān)閉SiC MOSFET時,必須考慮一種效應(yīng),即Si MOSFET中已知的米勒效應(yīng)。當(dāng)器件用于橋式配置時,這種影響可能會出現(xiàn)問題,尤其是
2023-02-24 15:03:59
電壓是整流前的0.9倍總結(jié):(1)畫圖時要注意4只整流二極管連接方法。(2)電源變壓器次級線圈不需要抽頭。(3)每一個半周交流輸入電壓期間內(nèi),有2只整流二極管同時串聯(lián)導(dǎo)通,另2只整流二極管截止。(4)橋式整流電路輸出波形是全波波形。
2020-05-29 07:58:47
`如圖1所示是負(fù)極性橋式整流電路。電路中的VD1~VD4四只整流二極管構(gòu)成橋式整流電路,T1是電源變壓器。電路結(jié)構(gòu)與正極性電路基本相同,只是橋式整流電路的接地引腳和直流電壓輸出引腳不同,兩只
2011-12-15 15:15:25
Q1的柵極、源極間電阻R1并聯(lián)追加電容器C2, 并緩慢降低Q1的柵極電壓,可以緩慢地使RDS(on)變小,從而可以抑制浪涌電流。■負(fù)載開關(guān)等效電路圖關(guān)于Nch MOSFET負(fù)載開關(guān)ON時的浪涌電流應(yīng)對
2019-07-23 01:13:34
) MOSFET很難在圖騰柱PFC拓?fù)?b class="flag-6" style="color: red">中的連續(xù)導(dǎo)通模式(CCM)下工作,因?yàn)轶w二極管的反向恢復(fù)特性很差。碳化硅(SiC) MOSFET采用全新的技術(shù),比Si MOSFET具有更勝一籌的開關(guān)性能、極小
2022-05-30 10:01:52
IGBT/功率 MOSFET 是一種電壓控制型器件,可用作電源電路、電機(jī)驅(qū)動器和其它系統(tǒng)中的開關(guān)元件。柵極是每個器件的電氣隔離控制端。MOSFET的另外兩端是源極和漏極,而對于IGBT,它們被稱為
2018-10-25 10:22:56
Sanket Sapre摘要IGBT/功率MOSFET是一種電壓控制型器件,可用作電源電路、電機(jī)驅(qū)動器和其它系統(tǒng)中的開關(guān)元件。柵極是每個器件的電氣隔離控制端。MOSFET的另外兩端是源極和漏極,而對
2018-11-01 11:35:35
參考Q1的懸空源極電壓。高端MOSFET源極上的電壓尖峰當(dāng)Q1和Q4接通時,負(fù)載電流從Q1經(jīng)過負(fù)載流到Q4和地。當(dāng)Q1和Q4斷開時,電流仍然沿同一方向流動,經(jīng)過續(xù)流二極管D6和D7,在Q1的源極上產(chǎn)生
2018-10-24 10:28:10
引腳,并僅使用體二極管換流工作的電路。Figure 6 是導(dǎo)通時的漏極 - 源極間電壓 VDS 和漏極電流 ID 的波形。這是驅(qū)動條件為 RG_EXT=10Ω、VDS=800V,ID 約為 50A
2020-11-10 06:00:00
中,我們將對相應(yīng)的對策進(jìn)行探討。關(guān)于柵極-源極間電壓產(chǎn)生的浪涌,在之前發(fā)布的Tech Web基礎(chǔ)知識 SiC功率元器件 應(yīng)用篇的“SiC MOSFET:橋式結(jié)構(gòu)中柵極-源極間電壓的動作”中已進(jìn)行了詳細(xì)說明。
2021-06-12 17:12:00
2563 
忽略SiC MOSFET本身的封裝電感和外圍電路的布線電感的影響。特別是柵極-源極間電壓,當(dāng)SiC MOSFET本身的電壓和電流發(fā)生變化時,可能會發(fā)生意想不到的正浪涌或負(fù)浪涌,需要對此采取對策。 在本文中,我們將對相應(yīng)的對策進(jìn)行探討。 什么是柵極-源極電壓產(chǎn)生的
2021-06-10 16:11:44
2121 SiC MOSFET具有出色的開關(guān)特性,但由于其開關(guān)過程中電壓和電流變化非常大,因此如Tech Web基礎(chǔ)知識 SiC功率元器件“SiC MOSFET:橋式結(jié)構(gòu)中柵極-源極間電壓的動作-前言”中介紹的需要準(zhǔn)確測量柵極和源極之間產(chǎn)生的浪涌。
2022-09-14 14:28:53
753 本文將介紹在SiC MOSFET這一系列開關(guān)動作中,SiC MOSFET的VDS和ID的變化會產(chǎn)生什么樣的電流和電壓。
2022-12-05 09:52:55
890 從本文開始,我們將進(jìn)入SiC功率元器件基礎(chǔ)知識應(yīng)用篇的第一彈“SiC MOSFET:橋式結(jié)構(gòu)中柵極-源極間電壓的動作”。前言:MOSFET和IGBT等電源開關(guān)元器件被廣泛應(yīng)用于各種電源應(yīng)用和電源線路中。
2023-02-08 13:43:22
250 
在探討“SiC MOSFET:橋式結(jié)構(gòu)中Gate-Source電壓的動作”時,本文先對SiC MOSFET的橋式結(jié)構(gòu)和工作進(jìn)行介紹,這也是這個主題的前提。
2023-02-08 13:43:23
340 
本文將針對上一篇文章中介紹過的SiC MOSFET橋式結(jié)構(gòu)的柵極驅(qū)動電路及其導(dǎo)通(Turn-on)/關(guān)斷( Turn-off)動作進(jìn)行解說。
2023-02-08 13:43:23
491 
上一篇文章中,簡單介紹了SiC MOSFET橋式結(jié)構(gòu)中柵極驅(qū)動電路的開關(guān)工作帶來的VDS和ID的變化所產(chǎn)生的電流和電壓情況。本文將詳細(xì)介紹SiC MOSFET在LS導(dǎo)通時的動作情況。
2023-02-08 13:43:23
300 
上一篇文章中介紹了LS開關(guān)導(dǎo)通時柵極 – 源極間電壓的動作。本文將繼續(xù)介紹LS關(guān)斷時的動作情況。低邊開關(guān)關(guān)斷時的柵極 – 源極間電壓的動作:下面是表示LS MOSFET關(guān)斷時的電流動作的等效電路和波形示意圖。
2023-02-08 13:43:23
399 
在上一篇文章中,簡單介紹了SiC功率元器件中柵極-源極電壓中產(chǎn)生的浪涌。從本文開始,將介紹針對所產(chǎn)生的SiC功率元器件中浪涌的對策。本文先介紹浪涌抑制電路。
2023-02-09 10:19:15
696 
本文的關(guān)鍵要點(diǎn)?通過采取措施防止SiC MOSFET中柵極-源極間電壓的負(fù)電壓浪涌,來防止SiC MOSFET的LS導(dǎo)通時,SiC MOSFET的HS誤導(dǎo)通。?具體方法取決于各電路中所示的對策電路的負(fù)載。
2023-02-09 10:19:16
589 
關(guān)于SiC功率元器件中柵極-源極間電壓產(chǎn)生的浪涌,在之前發(fā)布的Tech Web基礎(chǔ)知識 SiC功率元器件 應(yīng)用篇的“SiC MOSFET:橋式結(jié)構(gòu)中柵極-源極間電壓的動作”中已進(jìn)行了詳細(xì)說明,如果需要了解,請參閱這篇文章。
2023-02-09 10:19:17
707 
下面的電路圖是SiC MOSFET橋式結(jié)構(gòu)的同步式boost電路,LS開關(guān)導(dǎo)通時的示例。電路圖中包括SiC MOSFET的寄生電容、電感、電阻,HS和LS的SiC MOSFET的VDS和ID的變化帶來的各處的柵極電流(綠色線)。
2023-02-27 13:43:31
486 
忽略SiC MOSFET本身的封裝電感和外圍電路的布線電感的影響。特別是柵極-源極間電壓,當(dāng)SiC MOSFET本身的電壓和電流發(fā)生變化時,可能會發(fā)生意想不到的正浪涌或負(fù)浪涌,需要對此采取對策。在本文中,我們將對相應(yīng)的對策進(jìn)行探討。
2023-02-28 11:36:50
551 
SiC MOSFET具有出色的開關(guān)特性,但由于其開關(guān)過程中電壓和電流變化非常大,因此如Tech Web基礎(chǔ)知識 SiC功率元器件“SiC MOSFET:橋式結(jié)構(gòu)中柵極-源極間電壓的動作-前言”中介
2023-04-06 09:11:46
731 
板布局注意事項(xiàng)。 橋式結(jié)構(gòu)SiC MOSFET的柵極信號,由于工作時MOSFET之間的動作相互關(guān)聯(lián),因此導(dǎo)致SiC MOSFET的柵-源電壓中會產(chǎn)生意外的電壓浪涌。這種浪涌的抑制方法除了增加抑制電路外,電路板的版圖布局也很重要。希望您根據(jù)具體情況,參考本系列文章中介紹的
2023-04-13 12:20:02
814 SiC MOSFET具有出色的開關(guān)特性,但由于其開關(guān)過程中電壓和電流變化非常大,因此如Tech Web基礎(chǔ)知識 SiC功率元器件“SiC MOSFET:橋式結(jié)構(gòu)中柵極-源極間電壓的動作-前言”中介
2023-05-08 11:23:14
644 
MOSFET柵極電路電壓對電流的影響?MOSFET柵極電路電阻的作用? MOSFET(金屬-氧化物-半導(dǎo)體場效應(yīng)晶體管)是一種廣泛應(yīng)用于電子設(shè)備中的半導(dǎo)體器件。在MOSFET中,柵極電路的電壓和電阻
2023-10-22 15:18:12
1369 SiC MOSFET:橋式結(jié)構(gòu)中柵極-源極間電壓的動作
2023-12-07 14:34:17
223 
MOSFET柵極電路常見的作用有哪些?MOSFET柵極電路電壓對電流的影響? MOSFET(金屬氧化物半導(dǎo)體場效應(yīng)晶體管)是一種非常重要的電子器件,廣泛應(yīng)用于各種電子電路中。MOSFET的柵極電路
2023-11-29 17:46:40
571
評論