如果主機距離外圍設(shè)備很近,最新版本的 USB 可提供高達(dá) 2.5 Gb/s 的速率。在長距離使用 USB 的應(yīng)用中,設(shè)計人員必須找到一些方法來抵消信號衰減,以維持 USB 規(guī)定的數(shù)據(jù)速率。
雖然也可以采用均衡、加重和直流增益技術(shù),但通過 USB 轉(zhuǎn)接驅(qū)動器,設(shè)計人員可獲得更大的成功并縮短上市時間。轉(zhuǎn)接驅(qū)動器是集成器件,包括解決信號衰減所需的所有電子元件。
本文首先介紹轉(zhuǎn)接驅(qū)動器的操作,然后引入一些示例器件并說明其應(yīng)用方式。
USB 可以拉長距離,但需要付出代價
USB 規(guī)范在制定時,會假定僅在相距幾米內(nèi)的器件之間進(jìn)行連接,例如計算機和外部硬盤驅(qū)動器之間的連接。USB 3.0 規(guī)范規(guī)定電纜長度應(yīng)限制在 3 米以內(nèi),以保持信號完整性。但 USB 技術(shù)的成功之處正在于現(xiàn)在它可用于出于實際需要必須使用更長電纜的應(yīng)用。示例包括將服務(wù)器與安裝在大型商店中的顯示器面板連接。
遺憾的是,較長的電纜與高速 USB 版本常見的高頻信號相結(jié)合,會帶來信號完整性挑戰(zhàn),例如通道插入損耗、串?dāng)_、碼間干擾 (ISI) 以及隨之而來的吞吐量降低。
USB 系統(tǒng)設(shè)計人員可以采用多種技術(shù)來克服信號衰減。例如,均衡和加重可用于限制通道插入損耗和 ISI 的影響。提高 DC 增益有助于克服串?dāng)_引起的損耗。
但是,設(shè)計信號調(diào)節(jié)電路會增加 USB 系統(tǒng)的復(fù)雜性,并且加大挑戰(zhàn)的嚴(yán)峻程度,因為 USB 技術(shù)使用單獨的信號對進(jìn)行發(fā)送和接收,導(dǎo)致所需的電路加倍。USB 轉(zhuǎn)接驅(qū)動器的出現(xiàn)為設(shè)計師帶來了福音。
信號衰減的原因
高速 USB 需要克服的信號衰減問題并非該技術(shù)所獨有;所有高速通信鏈路產(chǎn)品的設(shè)計人員都熟知此類問題。它們也不是長電纜 USB 安裝所獨有,但由于短電纜中的信號衰減較少,因此問題并不明顯。
高速通信系統(tǒng)中的信號衰減主要是由于插入損耗、串?dāng)_和 ISI 的共同作用。
插入損耗是由電纜引起的信號功率衰減的結(jié)果。損耗與電纜長度成正比。串?dāng)_是相鄰信號載波的電容、電感或電導(dǎo)“耦合”,這降低了兩者中信號的完整性。當(dāng)一個符號(攜帶數(shù)據(jù)并根據(jù)載波頻率重復(fù)的離散信號)干擾前一個符號時,會發(fā)生 ISI,從而會增加噪聲和失真。ISI 與載波頻率(因為信號之間的時間間隔隨著頻率升高減小)和電纜長度(因為信噪比 (SNR) 在較長的電纜中減小)成比例。噪聲是信號中不攜帶有用信息的部分。
高速 USB 系統(tǒng)還將包括一定量的確定性和隨機性抖動,可以理解為與信號標(biāo)稱周期性的小偏差,這可能損害信號完整性。系統(tǒng)通信頻率越高,抖動的影響越大。
克服信號衰減
高速通信系統(tǒng)中不可避免地存在一些信號衰減,但是僅在 SNR 變得太差以至于發(fā)送的某些數(shù)據(jù)無法在接收器處解碼時,信號衰減才會成為一個問題。這會導(dǎo)致吞吐量受損,并且在極端情況下引發(fā)通信故障。
工程師已經(jīng)開發(fā)出四種技術(shù)來提高 SNR(或?qū)嵤靶盘栒{(diào)節(jié)”),以提升高速通信系統(tǒng)的吞吐量:
加重/去加重放大最可能受噪聲影響的發(fā)射頻率,然后在接收器處對其去加重,以重建原始信號。
均衡使用濾波來確保接收信號與發(fā)送信號的頻率特性相匹配,從而有效保持整個電纜長度上平坦的頻率響應(yīng)。
直流增益可補償給定長度電纜的線性衰減。
輸出擺幅控制可配置 USB 差分電壓,以確保其符合 0.8 至 1.2 伏的規(guī)格要求。
優(yōu)化特定配置的通信需要進(jìn)行大量測試,以確定一系列操作條件所需的均衡、加重、DC 增益和輸出擺幅控制的量。然后,可使用該信息在操作期間自適應(yīng)更改每個參數(shù),以維持理想信號。但是,對所有系統(tǒng)執(zhí)行自適應(yīng)信號調(diào)節(jié),而非僅針對最關(guān)鍵的通信系統(tǒng),這并不實際。
無源信號調(diào)節(jié),即單個設(shè)置滿足所有操作條件,確實能夠以低得多的成本獲得合理的結(jié)果。缺點是它無法始終確保最佳條件。設(shè)計人員可以通過提供特定長度的電纜(其設(shè)計已經(jīng)過使用測試)或指定最大電纜長度來確保消費者滿意。
USB 主機(微處理器)到轉(zhuǎn)接驅(qū)動器通道,以及轉(zhuǎn)接驅(qū)動器到外圍通道(通過連接器和電纜)都需要進(jìn)行信號調(diào)節(jié)。通常,每側(cè)都需要不同的信號調(diào)節(jié)參數(shù)。
重新設(shè)計轉(zhuǎn)接驅(qū)動器
USB 轉(zhuǎn)接驅(qū)動器是一種對 USB 通道實施透明(不影響數(shù)據(jù)傳輸)信號調(diào)節(jié)的方便且相對低成本的方式。諸如 Diodes Incorporated 的 PI3EQX1001XUAEX(一種 10 Gb/s、1 通道 USB 3.1 線性轉(zhuǎn)接驅(qū)動器)之類的產(chǎn)品,在端點設(shè)備接收之前,將高速 USB 信號恢復(fù)到原始狀態(tài)(圖 1)。
圖 1:USB 轉(zhuǎn)接驅(qū)動器(比如 Diodes Incorporated 的 PI3EQX1001XUAEX)是恢復(fù)長電纜信號完整性的便捷方式。(圖片來源:Diodes Incorporated)
由于轉(zhuǎn)接驅(qū)動器允許各種配置參數(shù),因此芯片可以安裝在主機 USB 印刷電路板上,盡可能靠近連接器,或者安裝在電纜的遠(yuǎn)端,靠近外圍設(shè)備或端點設(shè)備的連接器(如圖 1 所示)。但是,大多數(shù)應(yīng)用在電纜的主機 USB 端使用轉(zhuǎn)接驅(qū)動器。
電路板印制線的設(shè)計應(yīng)符合高速信號設(shè)計的最佳實踐指導(dǎo)準(zhǔn)則。例如,印制線應(yīng)是匹配、阻抗受控的差分對。布線應(yīng)避免使用過孔和急轉(zhuǎn)彎(保持在 135°或更大角度),并且印制線應(yīng)以穩(wěn)固的地平面為基準(zhǔn),不得有切斷和分叉,以防止阻抗不連續(xù)(圖 2)。
圖 2:將 USB 主機連接到轉(zhuǎn)接驅(qū)動器和連接器的印制線應(yīng)采用高速信號設(shè)計最佳實踐。例如,轉(zhuǎn)彎應(yīng)限制在 1350 以限制干擾。(圖片來源:Texas Instruments)
組裝了印刷電路板和組件之后,開發(fā)人員就可以配置信號調(diào)節(jié)參數(shù)以滿足特定通道的特定特性。
NXP Semiconductors 的 PTN36043BXY USB 3.0 轉(zhuǎn)接驅(qū)動器是現(xiàn)代產(chǎn)品的一個示例。該芯片是一款緊湊型、低功耗、雙差分通道產(chǎn)品,使用 2 對 1 有源開關(guān),帶有集成的 USB 3.0 轉(zhuǎn)接驅(qū)動器。該開關(guān)可以將兩個差分信號引導(dǎo)至兩個位置之一,并采用最小化串?dāng)_的設(shè)計(圖 3)。
圖 3:NXP Semiconductors 的 USB 3.0 轉(zhuǎn)接驅(qū)動器集成了加重、均衡、直流增益和輸出擺幅控制。由于電纜特性在不同方向上各不相同,因此傳輸線和接收器線需要單獨控制。此轉(zhuǎn)接驅(qū)動器結(jié)合 USB Type-C 連接器使用,因此它在連接器側(cè)具有兩條發(fā)射和接收雙絞線。(圖片來源:NXP Semiconductors)
NXP USB 3.0 轉(zhuǎn)接驅(qū)動器允許開發(fā)人員調(diào)整每個通道(USB 主機到轉(zhuǎn)接驅(qū)動器和轉(zhuǎn)接驅(qū)動器到外設(shè))的加重/去加重、均衡和輸出擺幅。此外,該器件還可通過提高直流增益來補償電纜衰減。
每個通道連接到兩個控制引腳,允許設(shè)計人員為給定設(shè)置選擇信號調(diào)節(jié)參數(shù)。對于每個通道上的 TX/RX 線路,開發(fā)人員可以從九種信號調(diào)節(jié)組合中選擇(表)。
評論