電阻合金
一百多年前(1889年),來自德國迪倫堡的IsabellenhütteHeusler公司(簡稱伊薩公司)研制出了精密電阻錳鎳銅合金(Manganin),自這種合金問世以來,其優異的特性奠定了精密檢測技術的基礎,例如也用于標準電阻器中。其他合金材料Isaohm和Zeranin以其132和29μOhm*cm的電阻率系數分別向上及向下補充和拓展了電阻率范圍。所有合金很大程度上滿足了電阻材料要求,并且成功地應用了數年之久,而其中Manganin合金因在世界上廣泛的知名度承擔了特殊角色。
在過去25年,為了應對基于磁場的電流檢測方法的發展,Isabellenhütte致力于通過對分流電阻的物理優化更加廣泛的拓展了精確檢測電流的范圍。隨著補償、溫度系數和運算放大器干擾信號得到一步步的改進,所選的電阻值可以降低至毫歐范圍,從而很大程度上解決了大電流條件下的大功率損耗問題(P=R*I2)。但是,同時由于故障電壓(其中包括干擾、熱電動勢等)導致相對誤差的極大增加,諸如低電感和低熱電動勢等等的特性就極為重要。
在下面的內容中,我們將簡要討論一些最重要的技術參數。
溫度系數(TCR)
圖表顯示的是Manganin電阻的典型拋物線溫度特性曲線。由于此特性僅由材料成分決定,因此可以生產具有極高可復制性和極低批次差異的電阻器。
溫度系數以ppm/K為單位,定義式如下:
TCR=(R(T)-R(T0))/R(T0)*1/(T-T0)=dR/R(T0)*1/R(T0)
其中,參考溫度T0的值通常是20°C或25°C。如果溫度曲線是與Manganin的曲線相似的彎曲曲線,則還必須給出用于檢測溫度系數的上限溫度,例如TCR(20-60)。低阻值范圍內通常采用TCR值為幾百個ppm/K的厚膜技術電阻器。圖中紅色曲線表示TCR為200ppm/K的電阻的溫度特征,50°C的溫度變化就足以導致電阻值變化超出1%。這樣電阻器無法進行精確的電流檢測。更極端的情況在PCB板上用蝕刻銅線作為電流檢測電阻器,由于銅的TCR值達到4000ppm/K(或0.4%/K),也就是說僅僅10°C的溫度變化都足以導致4%的阻值漂移。
熱電動勢(Uth)
當溫度輕微升高或者降低時,在不同材料的接觸面上會產生所謂的熱電動勢,這種效應對低阻值電阻的影響尤其值得關注,因為通常在此處檢測的電壓非常微小,所以微伏級的熱電動勢能夠嚴重地影響檢測結果。
直到今天,在許多講義和教課書中電阻合金康銅(Konstantan)依舊是繞線和沖壓分流器的主要材料之一,盡管它具有良好的TCR,但其對銅的熱電勢高達40μV/K。由于10℃的溫差導致400μV的電壓誤差,使用1毫歐的分流電阻檢測4A電流,檢測結果誤差增大了10%。更為嚴重的是,假如考慮到電阻尺寸,經常被忽略的珀爾帖效應(Peltiereffect)可以通過接觸面之間的相互加熱或降溫作用,將溫差增大到20℃以上(非常極端的例子是電阻一端的焊接部位出現熔化)。即使檢測電路在恒定電流狀態下,由于珀爾帖效應(Peltiereffect)而產生的溫差及溫差電動勢也會導致較明顯的電流起伏。在切斷電源之后,溫差消失之前,仍然能夠明顯檢測到電流,根據設計規格和阻值的不同,電流誤差能有幾個百分點或達到幾個安培。上面提到的精密電阻合金與銅在熱電動勢方面完全匹配,上述的效應可以完全被忽略,例如,0.3mOhm電阻器會在切斷100A的電流之后產生不到1μV的電壓(對應于3mA的電流)。
長期穩定性
長期穩定性對于任何傳感器都極為重要,因為即使在使用數年之后,用戶仍希望它能夠保持最初校準的精度。這意味著電阻材料必須耐腐蝕,而且在使用壽命周期內不得發生任何合金成分變化。介質均勻的復合合金Manganin、Zeranin和Isaohm經過嚴謹的鍛燒和穩定處理從而達到熱力學基本狀態。這類的合金的穩定性可以保持在ppm/年范圍內,就像百余年來Isabellenhütte(伊薩公司)憑借其作為國際檢測定標的標準電阻器向世人所展示和證實的一樣。
圖表中展示了在140°C溫度下工作超過1000小時的貼片電阻器的穩定性曲線。大約-0.2%的輕微漂移是由于生產過程中微小變形所導致的柵格缺損的所引起的,并且說明元件進一步趨于穩定,也就是說穩定性將變得更好。阻值漂移速度很大程度取決于溫度,因此溫度在+100℃時,這種漂移實際是檢測不出來的。