需要圖像處理、神經(jīng)網(wǎng)絡(luò)、模式識別等方面MATLAB程序共享的朋友或同學(xué)可以加QQ:75 68 19 787,歡迎加入!
2012-05-10 16:45:37
為提升識別準(zhǔn)確率,采用改進神經(jīng)網(wǎng)絡(luò),通過Mnist數(shù)據(jù)集進行訓(xùn)練。整體處理過程分為兩步:圖像預(yù)處理和改進神經(jīng)網(wǎng)絡(luò)推理。圖像預(yù)處理主要根據(jù)圖像的特征,將數(shù)據(jù)處理成規(guī)范的格式,而改進神經(jīng)網(wǎng)絡(luò)推理主要用于輸出結(jié)果。 整個過程分為兩個步驟:圖像預(yù)處理和神經(jīng)網(wǎng)絡(luò)推理。需要提前安裝Tengine框架,
2021-12-23 08:07:33
,特別是溫度的影響是測量誤差的主要,為保證SAW壓力傳感器高準(zhǔn)確度和高靈敏度測量,必須進行有效的溫度補償。本文將神經(jīng)網(wǎng)絡(luò)和模糊控制技術(shù)相結(jié)合,對SAW壓力傳感器進行智能化溫度補償,通過此方法進行的改進
2018-10-24 11:36:52
神經(jīng)網(wǎng)絡(luò)Matlab程序
2009-09-15 12:52:24
神經(jīng)網(wǎng)絡(luò)基本介紹
2018-01-04 13:41:23
第1章 概述 1.1 人工神經(jīng)網(wǎng)絡(luò)研究與發(fā)展 1.2 生物神經(jīng)元 1.3 人工神經(jīng)網(wǎng)絡(luò)的構(gòu)成 第2章人工神經(jīng)網(wǎng)絡(luò)基本模型 2.1 MP模型 2.2 感知器模型 2.3 自適應(yīng)線性
2012-03-20 11:32:43
將神經(jīng)網(wǎng)絡(luò)移植到STM32最近在做的一個項目需要用到網(wǎng)絡(luò)進行擬合,并且將擬合得到的結(jié)果用作控制,就在想能不能直接在單片機上做神經(jīng)網(wǎng)絡(luò)計算,這樣就可以實時計算,不依賴于上位機。所以要解決的主要是兩個
2022-01-11 06:20:53
神經(jīng)網(wǎng)絡(luò)簡介
2012-08-05 21:01:08
近年來,深度學(xué)習(xí)的繁榮,尤其是神經(jīng)網(wǎng)絡(luò)的發(fā)展,顛覆了傳統(tǒng)機器學(xué)習(xí)特征工程的時代,將人工智能的浪潮推到了歷史最高點。然而,盡管各種神經(jīng)網(wǎng)絡(luò)模型層出不窮,但往往模型性能越高,對超參數(shù)的要求也越來越嚴(yán)格
2019-09-11 11:52:14
學(xué)習(xí)技術(shù)無疑為其指明了道路。以知名品牌為首的汽車制造業(yè)正在深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)技術(shù)上進行投資,并向先進的計算企業(yè)、硅谷等技術(shù)引擎及學(xué)術(shù)界看齊。在中國,百度一直在此技術(shù)上保持領(lǐng)先。百度計劃在 2019 年將
2017-12-21 17:11:34
基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)算法
2019-05-16 17:25:05
CV之YOLOv3:深度學(xué)習(xí)之計算機視覺神經(jīng)網(wǎng)絡(luò)Yolov3-5clessses訓(xùn)練自己的數(shù)據(jù)集全程記錄(第二次)——Jason niu
2018-12-24 11:52:25
面向邊緣計算的嵌入式FPGA平臺卷積神經(jīng)網(wǎng)絡(luò)的構(gòu)建 通過設(shè)計卷積神經(jīng)網(wǎng)絡(luò)函數(shù)中的網(wǎng)絡(luò)層間可復(fù)用的加速器核心以減少硬件資源實現(xiàn)性能優(yōu)化卷積神經(jīng)網(wǎng)絡(luò)硬件。邊緣計算:克服云計算固有的問題,將應(yīng)用、數(shù)據(jù)
2021-12-23 07:26:12
,神經(jīng)網(wǎng)絡(luò)之父Hiton始終堅持計算機能夠像人類一樣思考,用直覺而非規(guī)則。盡管這一觀點被無數(shù)人質(zhì)疑過無數(shù)次,但隨著數(shù)據(jù)的不斷增長和數(shù)據(jù)挖掘技術(shù)的不斷進步,神經(jīng)網(wǎng)絡(luò)開始在語音和圖像等方面超越基于邏輯的人
2018-06-05 10:11:50
目前,在許多需要在本地進行數(shù)據(jù)分析的“永遠在線”的物聯(lián)網(wǎng)邊緣設(shè)備中,神經(jīng)網(wǎng)絡(luò)正在變得越來越普及,主要是因為可以有效地同時減少數(shù)據(jù)傳輸導(dǎo)致的延時和功耗。 而談到針對物聯(lián)網(wǎng)邊緣設(shè)備上的神經(jīng)網(wǎng)絡(luò),我們
2019-07-23 08:08:59
MATLAB神經(jīng)網(wǎng)絡(luò)
2013-07-08 15:17:13
請問:我在用labview做BP神經(jīng)網(wǎng)絡(luò)實現(xiàn)故障診斷,在NI官網(wǎng)找到了機器學(xué)習(xí)工具包(MLT),但是里面沒有關(guān)于這部分VI的幫助文檔,對于”BP神經(jīng)網(wǎng)絡(luò)分類“這個范例有很多不懂的地方,比如
2017-02-22 16:08:08
習(xí)神經(jīng)神經(jīng)網(wǎng)絡(luò),對于神經(jīng)網(wǎng)絡(luò)的實現(xiàn)是如何一直沒有具體實現(xiàn)一下:現(xiàn)看到一個簡單的神經(jīng)網(wǎng)絡(luò)模型用于訓(xùn)練的輸入數(shù)據(jù):對應(yīng)的輸出數(shù)據(jù):我們這里設(shè)置:1:節(jié)點個數(shù)設(shè)置:輸入層、隱層、輸出層的節(jié)點
2021-08-18 07:25:21
項目名稱:基于PYNQ的神經(jīng)網(wǎng)絡(luò)自動駕駛小車試用計劃:一、本人技術(shù)背景本人有四年以上的嵌入式開發(fā)和三年以上的機器視覺領(lǐng)域項目實踐經(jīng)驗,在計算機視覺與FPGA數(shù)字圖像處理方面有較多的理論研究與項目實踐
2018-12-19 11:36:24
項目名稱:基于PYNQ的卷積神經(jīng)網(wǎng)絡(luò)加速試用計劃:申請理由:本人研究生在讀,想要利用PYNQ深入探索卷積神經(jīng)網(wǎng)絡(luò)的硬件加速,在PYNQ上實現(xiàn)圖像的快速處理項目計劃:1、在PC端實現(xiàn)Lnet網(wǎng)絡(luò)的訓(xùn)練
2018-12-19 11:37:22
神經(jīng)網(wǎng)絡(luò)的計算。對于多層多節(jié)點的神經(jīng)網(wǎng)絡(luò),我們可以使用矩陣乘法來表示。在上面的神經(jīng)網(wǎng)絡(luò)中,我們將權(quán)重作為一個矩陣,將第一層的輸入作為另一個矩陣,兩個矩陣相乘,得到的矩陣恰好為第二層的輸入。對于python
2019-03-03 22:10:19
上的USB攝像頭作為主要傳感器,采集得到的前方道路圖像經(jīng)過數(shù)據(jù)預(yù)處理后,接入神經(jīng)網(wǎng)絡(luò)的輸入層,由神經(jīng)網(wǎng)絡(luò)的輸出層狀態(tài)將生成控制信號,控制小車的直走、左轉(zhuǎn)、右轉(zhuǎn)、與停止。交通標(biāo)識識別功能同樣使用USB
2019-03-02 23:10:52
今天學(xué)習(xí)了兩個神經(jīng)網(wǎng)絡(luò),分別是自適應(yīng)諧振(ART)神經(jīng)網(wǎng)絡(luò)與自組織映射(SOM)神經(jīng)網(wǎng)絡(luò)。整體感覺不是很難,只不過一些最基礎(chǔ)的概念容易理解不清。首先ART神經(jīng)網(wǎng)絡(luò)是競爭學(xué)習(xí)的一個代表,競爭型學(xué)習(xí)
2019-07-21 04:30:00
}或o koko_{k})的誤差神經(jīng)元偏倚的變化量:ΔΘ ΔΘ Delta Theta=學(xué)習(xí)步長η ηeta × ×imes 乘以神經(jīng)元的誤差BP神經(jīng)網(wǎng)絡(luò)算法過程網(wǎng)絡(luò)的初始化:包括權(quán)重和偏倚的初始化計算
2019-07-21 04:00:00
這個網(wǎng)絡(luò)輸入和相應(yīng)的輸出來“訓(xùn)練”這個網(wǎng)絡(luò),網(wǎng)絡(luò)根據(jù)輸入和輸出不斷地調(diào)節(jié)自己的各節(jié)點之間的權(quán)值來滿足輸入和輸出。這樣,當(dāng)訓(xùn)練結(jié)束后,我們給定一個輸入,網(wǎng)絡(luò)便會根據(jù)自己已調(diào)節(jié)好的權(quán)值計算出一個輸出。這就是神經(jīng)網(wǎng)絡(luò)的簡單原理。 神經(jīng)網(wǎng)絡(luò)原理下載-免費
2008-06-19 14:40:42
人工神經(jīng)網(wǎng)絡(luò)在傳感器數(shù)據(jù)融合中的應(yīng)用針對壓力傳感器對溫度的交叉靈敏度,采用BP 人工神經(jīng)網(wǎng)絡(luò)法對其進行數(shù)據(jù)融合處理,消除溫度對壓力傳感器的影響,大大提高了傳感器的穩(wěn)定性及其精度,效果良好。關(guān)鍵詞
2009-08-11 20:23:46
人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線性,非平穩(wěn),復(fù)雜的實際問題。那有哪些辦法能實現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21
人工神經(jīng)網(wǎng)絡(luò)課件
2016-06-19 10:15:48
簡單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57
圖卷積神經(jīng)網(wǎng)絡(luò)
2019-08-20 12:05:29
transform net)和預(yù)訓(xùn)練好的損失計算網(wǎng)絡(luò)VGG-16,圖像轉(zhuǎn)換網(wǎng)絡(luò)T以內(nèi)容圖像x為輸入,輸出風(fēng)格遷移后的圖像y,隨后內(nèi)容圖像yc,風(fēng)格圖像ys,以及y’輸入vgg-16計算特征。在此次深度神經(jīng)網(wǎng)絡(luò)
2018-05-08 15:57:47
全連接神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別
2019-06-06 14:21:42
以前的神經(jīng)網(wǎng)絡(luò)幾乎都是部署在云端(服務(wù)器上),設(shè)備端采集到數(shù)據(jù)通過網(wǎng)絡(luò)發(fā)送給服務(wù)器做inference(推理),結(jié)果再通過網(wǎng)絡(luò)返回給設(shè)備端。如今越來越多的神經(jīng)網(wǎng)絡(luò)部署在嵌入式設(shè)備端上,即
2021-12-23 06:16:40
卷積神經(jīng)網(wǎng)絡(luò)為什么適合圖像處理?
2022-09-08 10:23:10
卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會在意它呢? 對于這些非常中肯的問題,我們似乎可以給出相對簡明的答案。
2019-07-17 07:21:50
。神經(jīng)網(wǎng)絡(luò)的思想起源于1943年McCulloch 和 Pitts 提出的神經(jīng)元模型[19],簡稱 MCP 神經(jīng)元模 型。它是利用計算機來模擬人的神經(jīng)元反應(yīng)的過 程,具有開創(chuàng)性意義。此模型將神經(jīng)元反應(yīng)簡化
2022-08-02 10:39:39
卷積神經(jīng)網(wǎng)絡(luò)的層級結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)的常用框架
2020-12-29 06:16:44
復(fù)雜數(shù)據(jù)中提取特征的強大工具。例如,這包括音頻信號或圖像中的復(fù)雜模式識別。本文討論了 CNN 相對于經(jīng)典線性規(guī)劃的優(yōu)勢。后續(xù)文章“訓(xùn)練卷積神經(jīng)網(wǎng)絡(luò):什么是機器學(xué)習(xí)?——第2部分”將討論如何訓(xùn)練CNN
2023-02-23 20:11:10
什么是卷積神經(jīng)網(wǎng)絡(luò)?ImageNet-2010網(wǎng)絡(luò)結(jié)構(gòu)是如何構(gòu)成的?有哪些基本參數(shù)?
2021-06-17 11:48:22
Spotting)使用運動傳感器識別活動狀態(tài) (Human Activity Recognition)神經(jīng)網(wǎng)絡(luò)控制系統(tǒng) (替代PID等傳統(tǒng)控制方法)圖像處理 (帶專用加速器的 MCU)...它輕量但不低能, 它支持
2019-05-01 19:03:01
我們可以對神經(jīng)網(wǎng)絡(luò)架構(gòu)進行優(yōu)化,使之適配微控制器的內(nèi)存和計算限制范圍,并且不會影響精度。我們將在本文中解釋和探討深度可分離卷積神經(jīng)網(wǎng)絡(luò)在 Cortex-M 處理器上實現(xiàn)關(guān)鍵詞識別的潛力。關(guān)鍵詞識別
2021-07-26 09:46:37
神經(jīng)網(wǎng)絡(luò)可以建立參數(shù)Kp,Ki,Kd自整定的PID控制器。基于BP神經(jīng)網(wǎng)絡(luò)的PID控制系統(tǒng)結(jié)構(gòu)框圖如下圖所示:控制器由兩部分組成:經(jīng)典增量式PID控制器;BP神經(jīng)網(wǎng)絡(luò)...
2021-09-07 07:43:47
η ∈(0,1)代表學(xué)習(xí)速率。 由于BP 神經(jīng)網(wǎng)絡(luò)算法的收斂速度慢,優(yōu)化的目標(biāo)函數(shù)非常復(fù)雜,所以需要優(yōu)化學(xué)習(xí)速率。三層感知器的BP 學(xué)習(xí)算法權(quán)值調(diào)整計算公式為: 將每個加速度傳感器中每個軸的數(shù)據(jù)
2018-11-13 16:04:45
FPGA實現(xiàn)神經(jīng)網(wǎng)絡(luò)關(guān)鍵問題分析基于FPGA的ANN實現(xiàn)方法基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評估及局限性
2021-04-30 06:58:13
本文介紹了基于三層前饋BP神經(jīng)網(wǎng)絡(luò)的圖像壓縮算法,提出了基于FPGA的實現(xiàn)驗證方案,詳細討論了實現(xiàn)該壓縮網(wǎng)絡(luò)組成的重要模塊MAC電路的流水線設(shè)計。
2021-05-06 07:01:59
(4GB/8GB可選) ,eMMC(8GB/16GB/32GB/64GB/128GB可選)-雙核NNIE@840MHz 神經(jīng)網(wǎng)絡(luò)加速引擎-四核 DSP@700MHz,32K I-Cache /32K
2020-06-20 11:32:14
FPGA 上實現(xiàn)卷積神經(jīng)網(wǎng)絡(luò) (CNN)。CNN 是一類深度神經(jīng)網(wǎng)絡(luò),在處理大規(guī)模圖像識別任務(wù)以及與機器學(xué)習(xí)類似的其他問題方面已大獲成功。在當(dāng)前案例中,針對在 FPGA 上實現(xiàn) CNN 做一個可行性研究
2019-06-19 07:24:41
`如何將脈沖耦合神經(jīng)網(wǎng)絡(luò),體視學(xué),F(xiàn)ourier變換,小數(shù)冪指數(shù)濾波器結(jié)合實現(xiàn)藥材顯微圖像的特征提取?`
2015-04-16 12:25:45
Gbps SERDES功能用于實現(xiàn)多個雷達或攝像頭的橋接和聚合,并通過SGMII傳輸?shù)杰囕d網(wǎng)絡(luò)實現(xiàn)網(wǎng)絡(luò)邊緣機器學(xué)習(xí)應(yīng)用展望未來,移動相關(guān)解決方案的影響力將不斷增長,它們將繼續(xù)利用移動處理器和MIPI傳感器
2020-10-21 11:53:02
如何用stm32cube.ai簡化人工神經(jīng)網(wǎng)絡(luò)映射?如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)?
2021-10-11 08:05:42
原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)是一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預(yù)測的計算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預(yù)測能力輸出層:基于輸入和隱藏層的數(shù)據(jù)輸出預(yù)測
2021-07-12 08:02:11
稱為BP神經(jīng)網(wǎng)絡(luò)。采用BP神經(jīng)網(wǎng)絡(luò)模型能完成圖像數(shù)據(jù)的壓縮處理。在圖像壓縮中,神經(jīng)網(wǎng)絡(luò)的處理優(yōu)勢在于:巨量并行性;信息處理和存儲單元結(jié)合在一起;自組織自學(xué)習(xí)功能。與傳統(tǒng)的數(shù)字信號處理器DSP
2019-08-08 06:11:30
FPGA的嵌入式應(yīng)用。某人工神經(jīng)網(wǎng)絡(luò)的FPGA處理器能夠?qū)?shù)據(jù)進行運算處理,為了實現(xiàn)集數(shù)據(jù)通信、操作控制和數(shù)據(jù)處理于一體的便攜式神經(jīng)網(wǎng)絡(luò)處理器,需要設(shè)計一種基于嵌入式ARM內(nèi)核及現(xiàn)場可編程門陣列FPGA的主從結(jié)構(gòu)處理系統(tǒng)滿足要求。
2019-09-20 06:15:20
譯者|VincentLee來源 |曉飛的算法工程筆記脈沖神經(jīng)網(wǎng)絡(luò)(Spiking neural network, SNN)將脈沖神經(jīng)元作為計算單...
2021-07-26 06:23:59
小女子做基于labview的蒸發(fā)過程中液位的控制,想使用神經(jīng)網(wǎng)絡(luò)pid控制,請問這個控制方法可以嗎?有誰會神經(jīng)網(wǎng)絡(luò)pid控制么。。。叩謝
2016-09-23 13:43:16
求助大神 小的現(xiàn)在有個難題: 一組車重實時數(shù)據(jù) 對應(yīng)一個車重的最終數(shù)值(一個一維數(shù)組輸入對應(yīng)輸出一個數(shù)值) 這其中可能經(jīng)過均值、方差、去掉N個最大值、、、等等的計算 我的目的就是弄清楚這個中間計算過程 最近實在想不出什么好辦法就打算試試神經(jīng)網(wǎng)絡(luò) 請教大神用什么神經(jīng)網(wǎng)絡(luò)好求神經(jīng)網(wǎng)絡(luò)程序
2016-07-14 13:35:44
最簡單的神經(jīng)網(wǎng)絡(luò)
2019-09-11 11:57:36
針對模糊神經(jīng)網(wǎng)絡(luò)訓(xùn)練采用BP算法比較依賴于網(wǎng)絡(luò)的初始條件,訓(xùn)練時間較長,容易陷入局部極值的缺點,利用粒子群優(yōu)化算法(PSO)的全局搜索性能,將PSO用于模糊神經(jīng)網(wǎng)絡(luò)的訓(xùn)練過程.由于基本PSO算法存在
2010-05-06 09:05:35
IoT應(yīng)用。通過提供結(jié)合了靈活、超低功耗FPGA硬件和軟件解決方案、功能全面的機器學(xué)習(xí)推理技術(shù),Lattice sensAI將加速網(wǎng)絡(luò)邊緣設(shè)備上傳感器數(shù)據(jù)處理和分析的集成。這些新的網(wǎng)絡(luò)邊緣計算解決方案
2018-05-23 15:31:04
原文鏈接:【嵌入式AI部署&基礎(chǔ)網(wǎng)絡(luò)篇】輕量化神經(jīng)網(wǎng)絡(luò)精述--MobileNet V1-3、ShuffleNet V1-2、NasNet深度神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用在圖像分類、物體檢測等機器
2021-12-14 07:35:25
`將非局部計算作為獲取長時記憶的通用模塊,提高神經(jīng)網(wǎng)絡(luò)性能在深度神經(jīng)網(wǎng)絡(luò)中,獲取長時記憶(long-range dependency)至關(guān)重要。對于序列數(shù)據(jù)(例如語音、語言),遞歸運算
2018-11-12 14:52:50
為使較低精度傳感器獲得較高精度,以提高傳感器的性能價格比。本文提出人工神經(jīng)網(wǎng)絡(luò)提高傳感器精度的新方法。該神經(jīng)網(wǎng)絡(luò)可以看成是一個可以濾去傳感器信號噪聲的非線性濾
2009-06-16 16:15:02
12 提出了一種基于神經(jīng)網(wǎng)絡(luò)的傳感器故障監(jiān)測與診斷的新方法. 該方法先用BP 網(wǎng)絡(luò)的預(yù)測輸出和傳感器實際輸出之差來判斷傳感器是否發(fā)生了故障,然后用函數(shù)型連接神經(jīng)網(wǎng)絡(luò)模擬傳
2009-06-23 08:57:03
27 該文介紹了一種基于人工神經(jīng)網(wǎng)絡(luò)進行氣體傳感器故障檢測的新方法,文中利用單個氣體傳感器的輸出信息為氣體傳感器建立了動態(tài)非線性神經(jīng)網(wǎng)絡(luò)氣體傳感器輸出模型,并利用該
2009-06-26 11:37:26
13 介紹了用神經(jīng)網(wǎng)絡(luò)校正傳感器系統(tǒng)非線性誤差的原理和方法,提出了基于BP 神經(jīng)網(wǎng)絡(luò)傳感器非線性誤差校正及其模型、算法與實現(xiàn)技術(shù)。通過計算機仿真與應(yīng)用,顯示出這種逆模型不但
2009-06-29 10:22:06
12 簡要分析由MEMS 工藝制成的新型微氣體傳感器陣列的原理及其優(yōu)點,在此基礎(chǔ)上,應(yīng)用人工神經(jīng)網(wǎng)絡(luò)對氣體傳感器陣列的輸出進行模式分類、識別,實現(xiàn)對單一或混合氣體的有選擇性探測
2009-06-30 10:03:32
8 提出了一種基于神經(jīng)網(wǎng)絡(luò)的傳感器故障監(jiān)測與診斷的新方法. 該方法先用BP 網(wǎng)絡(luò)的預(yù)測輸出和傳感器實際輸出之差來判斷傳感器是否發(fā)生了故障,然后用函數(shù)型連接神經(jīng)網(wǎng)絡(luò)模擬傳
2009-07-04 11:14:53
18 為使較低精度傳感器獲得較高精度,以提高傳感器的性能價格比。本文提出人工神經(jīng)網(wǎng)絡(luò)提高傳感器精度的新方法。該神經(jīng)網(wǎng)絡(luò)可以看成是一個可以濾去傳感器信號噪聲的非線性濾
2009-07-07 09:01:48
26 大型熱力控制系統(tǒng)必須能夠檢測傳感器故障,并采取相應(yīng)的措施,保證控制過程的順利進行。提出了一種基于Powell 神經(jīng)網(wǎng)絡(luò)的故障檢測新方法,為系統(tǒng)中每一個傳感器構(gòu)造一個神經(jīng)網(wǎng)絡(luò)
2009-07-07 09:21:07
6 本文基于神經(jīng)網(wǎng)絡(luò)可以對非線性系統(tǒng)的任意逼近能力, 建立了六維腕力傳感器的補償模糊神經(jīng)網(wǎng)絡(luò)模型, 仿真結(jié)果表明, 這種補償模糊神經(jīng)網(wǎng)絡(luò)對六維腕力傳感器非線性系統(tǒng)逼近精度
2009-07-14 09:22:20
15 提出了基于人工神經(jīng)網(wǎng)絡(luò)進行多維力傳感器靜態(tài)解耦的方法。
2009-07-18 10:06:00
10 研究了基于神經(jīng)網(wǎng)絡(luò)的多傳感器融合技術(shù),并將其應(yīng)用于自主吸塵機器人中。給出了神經(jīng)網(wǎng)絡(luò)傳感器融合技術(shù)的基本原理,探索了改進的BP 信息融合算法,使得改進后的算法在收斂
2009-12-31 12:00:14
11 為了準(zhǔn)確檢測到EPS(電動助力轉(zhuǎn)向系統(tǒng))扭矩傳感器的具體故障部位,及時發(fā)現(xiàn)可能出現(xiàn)的故障,提高扭矩傳感器的可靠性,針對BP 神經(jīng)網(wǎng)絡(luò)的不足,提出了一種基于改進型BP 神經(jīng)
2010-01-11 12:20:59
16 人工神經(jīng)網(wǎng)絡(luò),人工神經(jīng)網(wǎng)絡(luò)是什么意思
神經(jīng)網(wǎng)絡(luò)是一門活躍的邊緣性交叉學(xué)科.研究它的發(fā)展過程和前沿問題,具有重要的理論意義
2010-03-06 13:39:01
3296 基于神經(jīng)網(wǎng)絡(luò)的開關(guān)磁阻電機無位置傳感器控制-夏長亮
2017-01-21 11:54:39
5 基于BP神經(jīng)網(wǎng)絡(luò)的唇裂圖像研究_朱霞
2017-03-19 11:33:11
0 針對圖像自動標(biāo)注中因人工選擇特征而導(dǎo)致信息缺失的缺點,提出使用卷積神經(jīng)網(wǎng)絡(luò)對樣本進行自主特征學(xué)習(xí)。為了適應(yīng)圖像自動標(biāo)注的多標(biāo)簽學(xué)習(xí)的特點以及提高對低頻詞匯的召回率,首先改進卷積神經(jīng)網(wǎng)絡(luò)的損失函數(shù)
2017-12-07 14:30:50
4 維也納大學(xué)的工程師團隊帶來了AI芯片的新玩法。他們利用傳感器人工神經(jīng)網(wǎng)絡(luò)大大提高了處理圖片的效率,可在納秒內(nèi)完成圖像識別任務(wù)。他們的設(shè)計思路是將一些計算任務(wù)轉(zhuǎn)移到計算機系統(tǒng)外部邊緣的感知設(shè)備上,這樣可以減少不必要的數(shù)據(jù)移動,進而產(chǎn)生了這種機器視覺的傳感器內(nèi)計算研究成果。
2020-03-20 15:50:17
2938 
為實現(xiàn)復(fù)雜背景圖像中髙精度邊緣的準(zhǔn)確提取,提出一種改進的單像素邊緣提取算法。在改進的全卷積神經(jīng)網(wǎng)絡(luò)中,通過添加輔助輸出層與采取多尺度輸入的方式初步提取圖像多像素邊緣,并利用分水嶺算法對多像素邊緣進行
2021-05-27 14:30:00
5 掌握連續(xù)Hopfield神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和運行機制,理解連續(xù)Hopfield神經(jīng)網(wǎng)絡(luò)用于優(yōu)化計算的基本原理,掌握連續(xù)Hopfield神經(jīng)網(wǎng)絡(luò)用于優(yōu)化計算的一般步驟。
2021-05-31 17:02:25
43 的分布更為明確;在機器人視覺領(lǐng)域,通過圖像邊緣檢測技術(shù)提高機器人視覺的精度等。 隨著科技的發(fā)展,人們將神經(jīng)網(wǎng)絡(luò)加載進入圖像檢測中,但現(xiàn)有的神經(jīng)網(wǎng)絡(luò)還存在不少缺陷。 1.檢測時間較長:ChouY等提出了一種改進的基于CNN的神經(jīng)
2021-07-06 10:00:18
1759 的分布更為明確;在機器人視覺領(lǐng)域,通過圖像邊緣檢測技術(shù)提高機器人視覺的精度等。 隨著科技的發(fā)展,人們將神經(jīng)網(wǎng)絡(luò)加載進入圖像檢測中,但現(xiàn)有的神經(jīng)網(wǎng)絡(luò)還存在不少缺陷。 1.檢測時間較長:ChouY等提出了一種改進的基于CNN的神經(jīng)
2021-07-13 15:39:42
2321 卷積神經(jīng)網(wǎng)絡(luò)如何識別圖像? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)由于其出色的圖像識別能力而成為深度學(xué)習(xí)的重要組成部分。CNN是一種深度神經(jīng)網(wǎng)絡(luò),其結(jié)構(gòu)
2023-08-21 16:49:27
1284 積神經(jīng)網(wǎng)絡(luò)計算公式 神經(jīng)網(wǎng)絡(luò)是一種類似于人腦的神經(jīng)系統(tǒng)的計算模型,它是一種可以用來進行模式識別、分類、預(yù)測等任務(wù)的強大工具。在深度學(xué)習(xí)領(lǐng)域,深度神經(jīng)網(wǎng)絡(luò)已成為最為重要的算法之一。在本文中,我們將重點
2023-08-21 16:49:35
985 中最重要的神經(jīng)網(wǎng)絡(luò)之一。它是一種由多個卷積層和池化層(也可稱為下采樣層)組成的神經(jīng)網(wǎng)絡(luò)。CNN 的基本思想是以圖像為輸入,通過網(wǎng)絡(luò)的卷積、下采樣和全連接等多個層次的處理,將圖像的高層抽象特征提取出來,從而完成對圖像的識別、分類等任務(wù)。 CNN 的基本結(jié)構(gòu)包括輸入層、卷積層、
2023-08-21 16:49:39
1144 卷積神經(jīng)網(wǎng)絡(luò)的介紹 什么是卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)涉及的關(guān)鍵技術(shù) 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種用于圖像分類、物體識別、語音識別等領(lǐng)域
2023-08-21 16:49:46
1229 深度神經(jīng)網(wǎng)絡(luò)是一種基于神經(jīng)網(wǎng)絡(luò)的機器學(xué)習(xí)算法,其主要特點是由多層神經(jīng)元構(gòu)成,可以根據(jù)數(shù)據(jù)自動調(diào)整神經(jīng)元之間的權(quán)重,從而實現(xiàn)對大規(guī)模數(shù)據(jù)進行預(yù)測和分類。卷積神經(jīng)網(wǎng)絡(luò)是深度神經(jīng)網(wǎng)絡(luò)的一種,主要應(yīng)用于圖像和視頻處理領(lǐng)域。
2023-08-21 17:07:36
1869 圖像識別卷積神經(jīng)網(wǎng)絡(luò)模型 隨著計算機技術(shù)的快速發(fā)展和深度學(xué)習(xí)的迅速普及,圖像識別卷積神經(jīng)網(wǎng)絡(luò)模型已經(jīng)成為當(dāng)今最受歡迎和廣泛使用的模型之一。卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural
2023-08-21 17:11:45
486
評論