--- 產品詳情 ---
Number of series cells (Min) | 2 |
Vin (Max) (V) | 25 |
Number of series cells (Max) | 4 |
Rating | Catalog |
- 2-, 3-, or 4-Cell Series Protection Control
- Can Directly Interface With the bq2084 Gas Gauges
- Provides Individual Cell Voltages and Battery Voltage to Battery Management Host
- Integrated Cell Balancing Drive
- I2C Compatible User Interface Allows Access to Battery Information
- Programmable Threshold and Delay for Over Load and Short Circuit During Charge and Discharge
- System Alert Interrupt Output
- Host Control Can Initiate Sleep Power Mode and Ship Mode
- Integrated 3.3-V, 25-mA LDO
- Supply Voltage Range From 4.5 V to 25 V
- Low Supply Current of 60-μA Typical
- APPLICATIONS
- Notebook PCs
- Medical and Test Equipment
- Portable Instrumentation
The bq29312 is a 2-, 3-, or 4-cell lithium-ion battery pack protection analog front end (AFE) IC that incorporates a 3.3-V, 25-mA low-dropout regulator (LDO). The bq29312 also integrates an I2C compatible interface to extract battery parameters such as cell voltages and control output status. Other parameters such as current protection thresholds and delays can be programmed into the bq29312 to increase the flexibility of the battery management system.
The bq29312 provides safety protection for overcharge, overload, short-circuit, overvoltage, and undervoltage conditions in conjunction with the battery management host. In overload and short-circuit conditions, the bq29312 turns the FET drive off autonomously dependant on the internal configuration setting.
The communications interface allows the host to observe and control the current status of the bq29312. It enables cell balancing, enters different power modes, sets overload levels, sets the overload blanking delay time, sets short-circuit threshold levels for charge and discharge, and sets the short-circuit blanking delay time.
Cell balancing of each cell is performed via a cell bypass path, which is enabled via the internal control register accessible via the I2C compatible interface. The maximum bypass current is set via an external series resistor and internal FET on resistance (typical 400 ).
為你推薦
-
TI數字多路復用器和編碼器SN54HC1512022-12-23 15:12
-
TI數字多路復用器和編碼器SN54LS1532022-12-23 15:12
-
TI數字多路復用器和編碼器CD54HC1472022-12-23 15:12
-
TI數字多路復用器和編碼器CY74FCT2257T2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74LVC257A2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74LVC157A2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74ALS258A2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74ALS257A2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74ALS157A2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74AHCT1582022-12-23 15:12
-
電動汽車直流快充方案設計【含參考設計】2023-08-03 08:08
-
Buck電路的原理及器件選型指南2023-07-31 22:28
-
100W USB PD 3.0電源2023-07-31 22:27
-
基于STM32的300W無刷直流電機驅動方案2023-07-06 10:02
-
上新啦!開發板僅需9.9元!2023-06-21 17:43
-
參考設計 | 2KW AC/DC數字電源方案2023-06-21 17:43
-
千萬不能小瞧的PCB半孔板2023-06-21 17:34