--- 產(chǎn)品詳情 ---
DSP | 1 C64x |
DSP MHz (Max) | 594, 729 |
CPU | 32-/64-bit |
Operating system | DSP/BIOS, Linux, VLX |
Ethernet MAC | 10/100/1000 |
Rating | Catalog |
Operating temperature range (C) | -40 to 105, -40 to 85, 0 to 85 |
The TMS320DM6467 (also referenced as DM6467) leverages TI's DaVinci? technology to meet the networked media encode and decode digital media processing needs of next-generation embedded devices.
The DM6467 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution.
The dual-core architecture of the DM6467 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core.
The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously.
The ARM core incorporates:
- A coprocessor 15 (CP15) and protection module
- Data and program Memory Management Units (MMUs) with table look-aside buffers.
- Separate 16K-byte instruction and 8K-byte data caches. Both are four-way associative with virtual index virtual tag (VIVT).
The TMS320C64x+? DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000? DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000? DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set.
Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively.
With performance of up to 5832 million instructions per second (MIPS) at a clock rate of 729 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units-two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2376 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4752 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature number SPRU732).
The DM6467 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6467 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two.
The peripheral set includes: a configurable video port; a 10/100/1000 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; a 4-bit transfer/4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel audio serial port (McASP0) with 4 serializers; a secondary multichannel audio serial port (McASP1) with a single transmit serializer; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a configurable 32-bit host port interface (HPI); up to 33-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART/IrDA/CIR interfaces with modem interface signals on UART0; 2 pulse width modulator (PWM) peripherals; an ATA/ATAPI-6 interface; a 33-MHz peripheral component interface (PCI); and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2.
The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6467 and the network. The DM6467 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode; and 1000Base-TX (1 Gbps) in full-duplex mode with hardware flow control and quality of service (QOS) support.
The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses.
The PCI, HPI, I2C, SPI, USB2.0, and VLYNQ ports allow the DM6467 to easily control peripheral devices and/or communicate with host processors.
The DM6467 also includes a High-Definition Video/Imaging Co-processor (HDVICP) and Video Data Conversion Engine (VDCE) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the HDVICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative.
The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.
The DM6467 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows? debugger interface for visibility into source code
為你推薦
-
TI數(shù)字多路復(fù)用器和編碼器SN54HC1512022-12-23 15:12
-
TI數(shù)字多路復(fù)用器和編碼器SN54LS1532022-12-23 15:12
-
TI數(shù)字多路復(fù)用器和編碼器CD54HC1472022-12-23 15:12
-
TI數(shù)字多路復(fù)用器和編碼器CY74FCT2257T2022-12-23 15:12
-
TI數(shù)字多路復(fù)用器和編碼器SN74LVC257A2022-12-23 15:12
-
TI數(shù)字多路復(fù)用器和編碼器SN74LVC157A2022-12-23 15:12
-
TI數(shù)字多路復(fù)用器和編碼器SN74ALS258A2022-12-23 15:12
-
TI數(shù)字多路復(fù)用器和編碼器SN74ALS257A2022-12-23 15:12
-
TI數(shù)字多路復(fù)用器和編碼器SN74ALS157A2022-12-23 15:12
-
TI數(shù)字多路復(fù)用器和編碼器SN74AHCT1582022-12-23 15:12
-
【PCB設(shè)計必備】31條布線技巧2023-08-03 08:09
相信大家在做PCB設(shè)計時,都會發(fā)現(xiàn)布線這個環(huán)節(jié)必不可少,而且布線的合理性,也決定了PCB的美觀度和其生產(chǎn)成本的高低,同時還能體現(xiàn)出電路性能和散熱性能的好壞,以及是否可以讓器件的性能達到最優(yōu)等。在上篇內(nèi)容中,小編主要分享了PCB線寬線距的一些設(shè)計規(guī)則,那么本篇內(nèi)容,將針對PCB的布線方式,做個全面的總結(jié)給到大家,希望能夠?qū)︷B(yǎng)成良好的設(shè)計習(xí)慣有所幫助。1走線長度1693瀏覽量 -
電動汽車直流快充方案設(shè)計【含參考設(shè)計】2023-08-03 08:08
大功率直流充電系統(tǒng)架構(gòu)大功率直流充電設(shè)計標(biāo)準(zhǔn)國家大功率充電標(biāo)準(zhǔn)“Chaoji”技術(shù)標(biāo)準(zhǔn)設(shè)計目標(biāo)是未來可實現(xiàn)電動汽車充電5分鐘行駛400公里。“Chaoji”技術(shù)標(biāo)準(zhǔn)主要設(shè)計參數(shù)如下:最大電壓:目前1000V(可擴展到1500V);最大電流:帶冷卻系統(tǒng)500A(可擴展到600A);不帶冷卻系統(tǒng)150-200A;最大功率:900KW。大功率直流充電系統(tǒng)架構(gòu)大功率 -
Buck電路的原理及器件選型指南2023-07-31 22:28
-
100W USB PD 3.0電源2023-07-31 22:27
-
千萬不要忽略PCB設(shè)計中線寬線距的重要性2023-07-31 22:27
想要做好PCB設(shè)計,除了整體的布線布局外,線寬線距的規(guī)則也非常重要,因為線寬線距決定著電路板的性能和穩(wěn)定性。所以本篇以RK3588為例,詳細為大家介紹一下PCB線寬線距的通用設(shè)計規(guī)則。要注意的是,布線之前須把軟件默認設(shè)置選項設(shè)置好,并打開DRC檢測開關(guān)。布線建議打開5mil格點,等長時可根據(jù)情況設(shè)置1mil格點。PCB布線線寬01布線首先應(yīng)滿足工廠加工能力,1795瀏覽量 -
基于STM32的300W無刷直流電機驅(qū)動方案2023-07-06 10:02
-
上新啦!開發(fā)板僅需9.9元!2023-06-21 17:43
-
參考設(shè)計 | 2KW AC/DC數(shù)字電源方案2023-06-21 17:43
-
千萬不能小瞧的PCB半孔板2023-06-21 17:34