女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

企業(yè)號(hào)介紹

全部
  • 全部
  • 產(chǎn)品
  • 方案
  • 文章
  • 資料
  • 企業(yè)

華秋商城

元器件現(xiàn)貨采購(gòu)/代購(gòu)/選型一站式BOM配單

1.8w 內(nèi)容數(shù) 99w+ 瀏覽量 2.1k 粉絲

TI專(zhuān)用邏輯 ICSN74V3680

--- 產(chǎn)品詳情 ---

16384 x 36 同步 FIFO 存儲(chǔ)器
Supply voltage (Min) (V) 3.15
Supply voltage (Max) (V) 3.45
Input type Standard CMOS
Output type 3-State
Clock Frequency (Max) (MHz) 1
Features Programmable Flags, Unidirectional
  • Choice of Memory Organizations
    • SN74V3640 - 1024 × 36 Bit
    • SN74V3650 - 2048 × 36 Bit
    • SN74V3660 - 4096 × 36 Bit
    • SN74V3670 - 8192 × 36 Bit
    • SN74V3680 - 16384 × 36 Bit
    • SN74V3690 - 32768 × 36 Bit
  • 166-MHz Operation (6-ns Read/Write Cycle Time)
  • User-Selectable Input and Output Port Bus Sizing
    • ×36 in to ×36 out
    • ×36 in to ×18 out
    • ×36 in to ×9 out
    • ×18 in to ×36 out
    • ×9 in to ×36 out
  • Big-Endian/Little-Endian User-Selectable Byte Representation
  • 5-V-Tolerant Inputs
  • Fixed, Low, First-Word Latency
  • Zero-Latency Retransmit
  • Master Reset Clears Entire FIFO
  • Partial Reset Clears Data, but Retains Programmable Settings
  • Empty, Full, and Half-Full Flags Signal FIFO Status
  • Programmable Almost-Empty and Almost-Full Flags; Each Flag Can Default to One of Eight Preselected Offsets
  • Selectable Synchronous/Asynchronous Timing Modes for Almost-Empty and Almost-Full Flags
  • Program Programmable Flags by Either Serial or Parallel Means
  • Select Standard Timing (Using EF\ and FF\ Flags) or First-Word Fall-Through (FWFT) Timing (Using OR\ and IR\ Flags)
  • Output Enable Puts Data Outputs in High-Impedance State
  • Easily Expandable in Depth and Width
  • Independent Read and Write Clocks Permit Reading and Writing Simultaneously
  • High-Performance Submicron CMOS Technology
  • Available in 128-Pin Thin Quad Flat Pack (TQFP)

The SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, and SN74V3690 are exceptionally deep, high-speed CMOS, first-in first-out (FIFO) memories, with clocked read and write controls and a flexible bus-matching ×36/×18/×9 data flow. These FIFOs offer several key user benefits:

  • Flexible ×36/×18/×9 bus matching on both read and write ports
  • The period required by the retransmit operation is fixed and short.
  • The first-word data-latency period, from the time the first word is written to an empty FIFO to the time it can be read, is fixed and short.
  • High-density offerings up to 1 Mbit

Bus-matching synchronous FIFOs are particularly appropriate for network, video, signal processing, telecommunications, data communications, and other applications that need to buffer large amounts of data and match buses of unequal sizes.

Each FIFO has a data input port (Dn) and a data output port (Qn), both of which can assume 36-bit, 18-bit, or 9-bit width, as determined by the state of external control pins? input width (IW), output width (OW), and bus matching (BM) during the master-reset cycle.

The input port is controlled by write-clock (WCLK) and write-enable (WEN\) inputs. Data is written into the FIFO on every rising edge of WCLK when WEN\ is asserted. The output port is controlled by read-clock (RCLK) and read-enable (REN\) inputs. Data is read from the FIFO on every rising edge of RCLK when REN\ is asserted. An output-enable (OE\) input is provided for 3-state control of the outputs.

The frequencies of the RCLK and WCLK signals can vary from 0 to fMAX, with complete independence. There are no restrictions on the frequency of one clock input with respect to the other.

There are two possible timing modes of operation with these devices: first-word fall-through (FWFT) mode and standard mode.

In FWFT mode, the first word written to an empty FIFO is clocked directly to the data output lines after three transitions of the RCLK signal. REN\ need not be asserted for accessing the first word. However, subsequent words written to the FIFO do require a low on REN\ for access. The state of the FWFT/SI input during master reset determines the timing mode.

For applications requiring more data-storage capacity than a single FIFO can provide, the FWFT timing mode permits depth expansion by chaining FIFOs in series (i.e., the data outputs of one FIFO are connected to the corresponding data inputs of the next). No external logic is required.

In standard mode, the first word written to an empty FIFO does not appear on the data output lines unless a specific read operation is performed. A read operation, which consists of activating REN\ and enabling a rising RCLK edge, shifts the word from internal memory to the data output lines.

These FIFOs have five flag pins: empty flag or output ready (EF\/OR\), full flag or input ready (FF\/IR\), half-full flag (HF), programmable almost-empty flag (PAE\), and programmable almost-full flag (PAF\). The EF\ and FF\ functions are selected in standard mode. The IR\ and OR\ functions are selected in FWFT mode. HF\, PAE\, and PAF\ are always available for use, regardless of timing mode.

PAE\ and PAF\ can be programmed independently to switch at any point in memory. Programmable offsets determine the flag-switching threshold and can be loaded by parallel or serial methods. Eight default offset settings are also provided, so that PAE\ can be set to switch at a predefined number of locations from the empty boundary. The PAF\ threshold also can be set at similar predefined values from the full boundary. The default offset values are set during master reset by the state of the FSEL0, FSEL1, and LD\.

For serial programming, SEN\, together with LD\, loads the offset registers via the serial input (SI) on each rising edge of WCLK. For parallel programming, WEN\, together with LD\, loads the offset registers via Dn on each rising edge of WCLK. REN\, together with LD\, can read the offsets in parallel from Qn on each rising edge of RCLK, regardless of whether serial parallel offset loading has been selected.

During master reset (MRS\), the read and write pointers are set to the first location of the FIFO. The FWFT pin selects standard mode or FWFT mode.

Partial reset (PRS\) also sets the read and write pointers to the first location of the memory. However, the timing mode, programmable-flag programming method, and default or programmed offset settings existing before partial reset remain unchanged. The flags are updated according to the timing mode and offsets in effect. PRS\ is useful for resetting a device in mid-operation, when reprogramming programmable flags would be undesirable.

Also, the timing modes of PAE\ and PAF\ outputs can be selected. Timing modes can be set to be either asynchronous or synchronous for PAE\ and PAF\.

If the asynchronous PAE\/PAF\ configuration is selected, PAE\ is asserted low on the low-to-high transition of RCLK. PAE\ is reset to high on the low-to-high transition of WCLK. Similarly, PAF\ is asserted low on the low-to-high transition of WCLK, and PAF\ is reset to high on the low-to-high transition of RCLK.

If the synchronous PAE\/PAF\ configuration is selected , the PAE\ is asserted and updated on the rising edge of RCLK only, and not WCLK. Similarly, PAF\ is asserted and updated on the rising edge of WCLK only, and not RCLK. The mode desired is configured during master reset by the state of the programmable flag mode (PFM).

The retransmit function allows data to be reread from the FIFO more than once. A low on the retransmit (RT\) input during a rising RCLK edge initiates a retransmit operation by setting the read pointer to the first location of the memory array. Zero-latency retransmit timing mode can be selected using the retransmit timing mode (RM). During master reset, a low on RM selects zero-latency retransmit. A high on RM during master reset selects normal latency.

If zero-latency retransmit operation is selected, the first data word to be retransmitted is placed on the output register, with respect to the same RCLK edge that initiated the retransmit, if RT\ is low.

See Figures 11 and 12 for normal latency retransmit timing. See Figures 13 and 14 for zero-latency retransmit timing.

The devices can be configured with different input and output bus widths (see Table 1).

A big-endian/little-endian data word format is provided. This function is useful when data is written into the FIFO in long-word (×36/×18) format and read out of the FIFO in small-word (×18/×9) format. If big-endian mode is selected, the most significant byte (MSB) (word) of the long word written into the FIFO is read out of the FIFO first, followed by the least-significant byte (LSB). If little-endian format is selected, the LSB of the long word written into the FIFO is read out first, followed by the MSB. The mode desired is configured during master reset by the state of the big-endian/little-endian (BE\) pin (see Figure 4 for the bus-matching byte arrangement).

The interspersed/noninterspersed parity (IP) bit function allows the user to select the parity bit in the word loaded into the parallel port (D0-Dn) when programming the flag offsets. If interspersed-parity mode is selected, the FIFO assumes that the parity bit is located in bit positions D8, D17, D26, and D35 during the parallel programming of the flag offsets. If noninterspersed-parity mode is selected, D8, D17, and D26 are assumed to be valid bits and D32, D33, D34, and D35 are ignored. Interspersed parity mode is selected during master reset by the state of the IP input. Interspersed parity control has an effect only during parallel programming of the offset registers. It does not affect data written to and read from the FIFO.

The SN74V3640, SN74V3650, SN74V3660, SN74V3670, SN74V3680, and SN74V3690 are fabricated using high-speed submicron CMOS technology, and are characterized for operation from 0°C to 70°C.

為你推薦

  • 如何利用運(yùn)算放大器設(shè)計(jì)振蕩電路?2023-08-09 08:08

    使用運(yùn)算放大器設(shè)計(jì)振蕩電路運(yùn)算放大器的工作原理發(fā)明運(yùn)算放大器的人絕對(duì)是天才。中間兩端接上電源,當(dāng)同相輸入大于反相輸入,右側(cè)就會(huì)輸出(接近)電源電壓(Vcc),如果反過(guò)來(lái)小于同相輸入,則輸出0V(負(fù)電源)電壓。在輸出端接上燈泡,假設(shè)我想控制燈泡循環(huán)亮滅,那就需要一會(huì)輸出高電平點(diǎn)亮,一會(huì)輸出低電平熄滅。也就是我需要讓左邊能自動(dòng)變化大小,就能實(shí)現(xiàn)控制燈泡。如何讓電
  • 【PCB設(shè)計(jì)必備】31條布線技巧2023-08-03 08:09

    相信大家在做PCB設(shè)計(jì)時(shí),都會(huì)發(fā)現(xiàn)布線這個(gè)環(huán)節(jié)必不可少,而且布線的合理性,也決定了PCB的美觀度和其生產(chǎn)成本的高低,同時(shí)還能體現(xiàn)出電路性能和散熱性能的好壞,以及是否可以讓器件的性能達(dá)到最優(yōu)等。在上篇內(nèi)容中,小編主要分享了PCB線寬線距的一些設(shè)計(jì)規(guī)則,那么本篇內(nèi)容,將針對(duì)PCB的布線方式,做個(gè)全面的總結(jié)給到大家,希望能夠?qū)︷B(yǎng)成良好的設(shè)計(jì)習(xí)慣有所幫助。1走線長(zhǎng)度
  • 電動(dòng)汽車(chē)直流快充方案設(shè)計(jì)【含參考設(shè)計(jì)】2023-08-03 08:08

    大功率直流充電系統(tǒng)架構(gòu)大功率直流充電設(shè)計(jì)標(biāo)準(zhǔn)國(guó)家大功率充電標(biāo)準(zhǔn)“Chaoji”技術(shù)標(biāo)準(zhǔn)設(shè)計(jì)目標(biāo)是未來(lái)可實(shí)現(xiàn)電動(dòng)汽車(chē)充電5分鐘行駛400公里。“Chaoji”技術(shù)標(biāo)準(zhǔn)主要設(shè)計(jì)參數(shù)如下:最大電壓:目前1000V(可擴(kuò)展到1500V);最大電流:帶冷卻系統(tǒng)500A(可擴(kuò)展到600A);不帶冷卻系統(tǒng)150-200A;最大功率:900KW。大功率直流充電系統(tǒng)架構(gòu)大功率
  • Buck電路的原理及器件選型指南2023-07-31 22:28

    Buck電路工作原理電源閉合時(shí)電壓會(huì)快速增加,當(dāng)斷開(kāi)時(shí)電壓會(huì)快速減小,如果開(kāi)關(guān)速度足夠快的話,是不是就能把負(fù)載,控制在想要的電壓值以?xún)?nèi)呢?假設(shè)12V降壓到5V,也就意味著,MOS管開(kāi)關(guān)需要42%時(shí)間導(dǎo)通,58%時(shí)間斷開(kāi)。當(dāng)42%時(shí)間MOS管導(dǎo)通時(shí),電感被充磁儲(chǔ)能,同時(shí)對(duì)電容進(jìn)行充電,給負(fù)載提供電量。當(dāng)58%時(shí)間MOS管斷開(kāi)時(shí),由于電感上的電流不能突變,電路通
    2320瀏覽量
  • 100W USB PD 3.0電源2023-07-31 22:27

    什么是PD3.0快充?PD快充協(xié)議全稱(chēng)“USBPowerDelivery”功率傳輸協(xié)議,簡(jiǎn)稱(chēng)為“PD協(xié)議”。2015年11月,USBPD快充迎來(lái)了大版本更新,進(jìn)入到了USBPD3.0快充時(shí)代。USBPD3.0相對(duì)于USBPD2.0的變化主要有三方面:增加了對(duì)設(shè)備內(nèi)置電池特性更為詳細(xì)的描述;增加了通過(guò)PD通信進(jìn)行設(shè)備軟硬件版本識(shí)別和軟件更新的功能,以及增加了數(shù)
    1800瀏覽量
  • 千萬(wàn)不要忽略PCB設(shè)計(jì)中線寬線距的重要性2023-07-31 22:27

    想要做好PCB設(shè)計(jì),除了整體的布線布局外,線寬線距的規(guī)則也非常重要,因?yàn)榫€寬線距決定著電路板的性能和穩(wěn)定性。所以本篇以RK3588為例,詳細(xì)為大家介紹一下PCB線寬線距的通用設(shè)計(jì)規(guī)則。要注意的是,布線之前須把軟件默認(rèn)設(shè)置選項(xiàng)設(shè)置好,并打開(kāi)DRC檢測(cè)開(kāi)關(guān)。布線建議打開(kāi)5mil格點(diǎn),等長(zhǎng)時(shí)可根據(jù)情況設(shè)置1mil格點(diǎn)。PCB布線線寬01布線首先應(yīng)滿(mǎn)足工廠加工能力,
  • 基于STM32的300W無(wú)刷直流電機(jī)驅(qū)動(dòng)方案2023-07-06 10:02

    如何驅(qū)動(dòng)無(wú)刷電機(jī)?近些年,由于無(wú)刷直流電機(jī)大規(guī)模的研發(fā)和技術(shù)的逐漸成熟,已逐步成為工業(yè)用電機(jī)的發(fā)展主流。圍繞降低生產(chǎn)成本和提高運(yùn)行效率,各大廠商也提供不同型號(hào)的電機(jī)以滿(mǎn)足不同驅(qū)動(dòng)系統(tǒng)的需求。現(xiàn)階段已經(jīng)在紡織、冶金、印刷、自動(dòng)化生產(chǎn)流水線、數(shù)控機(jī)床等工業(yè)生產(chǎn)方面應(yīng)用。無(wú)刷直流電機(jī)的優(yōu)點(diǎn)與局限性?xún)?yōu)點(diǎn):高輸出功率、小尺寸和重量、散熱性好、效率高、運(yùn)行速度范圍寬、低
  • 上新啦!開(kāi)發(fā)板僅需9.9元!2023-06-21 17:43

    上新啦!開(kāi)發(fā)板僅需9.9元!
  • 參考設(shè)計(jì) | 2KW AC/DC數(shù)字電源方案2023-06-21 17:43

    什么是數(shù)字電源?數(shù)字電源,以數(shù)字信號(hào)處理器(DSP)或微控制器(MCU)為核心,將數(shù)字電源驅(qū)動(dòng)器、PWM控制器等作為控制對(duì)象,能實(shí)現(xiàn)控制、管理和監(jiān)測(cè)功能的電源產(chǎn)品。它是通過(guò)設(shè)定開(kāi)關(guān)電源的內(nèi)部參數(shù)來(lái)改變其外特性,并在“電源控制”的基礎(chǔ)上增加了“電源管理”。所謂電源管理是指將電源有效地分配給系統(tǒng)的不同組件,最大限度地降低損耗。數(shù)字電源的管理(如電源排序)必須全部
  • 千萬(wàn)不能小瞧的PCB半孔板2023-06-21 17:34

    PCB半孔是沿著PCB邊界鉆出的成排的孔,當(dāng)孔被鍍銅時(shí),邊緣被修剪掉,使沿邊界的孔減半,讓PCB的邊緣看起來(lái)像電鍍表面孔內(nèi)有銅。模塊類(lèi)PCB基本上都設(shè)計(jì)有半孔,主要是方便焊接,因?yàn)槟K面積小,功能需求多,所以通常半孔設(shè)計(jì)在PCB單只最邊沿,在鑼外形時(shí)鑼去一半,只留下半邊孔在PCB上。半孔板的可制造性設(shè)計(jì)最小半孔最小半孔的工藝制成能力是0.5mm,前提是孔必須
    3146瀏覽量