SPI4.2接口時序分析
SPI4.2(System Packet Interface Level4, Phase 2)接口是國際組織OIF制定的針對OC192(10Gbps)速率的接口。目前廣泛應用在高速芯片上,作為物理層芯片和鏈路層芯片之間的接口。SPI4.2的接口定義如下:
SPI4.2接口信號按照收、發方向分為兩組,如圖3中,以T開頭的發送信號組和以R開頭的接收信號組。每組又分為兩類,以發送信號組為例,有數據類和狀態類,其中數據類包含TDCLK、TDAT[15:0],TCTL,狀態類包含TSCLK,TSTAT[1:0]。
SPI4.2借口信號
中,狀態類信號是單端LVTTL信號,接收端利用TSCLK的上升沿對 TSTAT[1:0]采樣,方向為從物理層芯片發往鏈路層芯片;數據類信號是差分LVDS信號,接收端利用TDCLK的上升沿與下降沿對 TDAT[15:0]和TCTL采樣,即一個時鐘周期進行兩次采樣,方向為從鏈路層芯片發往物理層芯片。
由于接收信號組與發送信號組的時序分析類似,因此本文僅對發送信號組進行時序分析。
在本設計中,采用Vitesee公司的VSC9128作為鏈路層芯片,VSC7323作為物理層芯片,以下參數分別從這兩個芯片的Datasheet中提取出來。
● 狀態類信號的時序分析
對狀態類信號,信號的流向是從物理層芯片發送到鏈路層芯片。
第一步,確定信號工作頻率,對狀態類信號,本設計設定其工作頻率和時鐘周期為:
Freq=78.125MHz;
Tcycle = 1/ Freq = 12.8ns;
第二步,從發送端,即物理層芯片手冊提取以下參數:
-1ns < Tco < 2.5ns;
第三步,從接收端,即鏈路層芯片手冊提取建立時間和保持時間的要求:
Tsetup(min) = 2ns;
Thold(min) = 0.5ns;
將以上數據代入式1和式2:
2.5ns + (Tflight-data - Tflight-clk)MAX + 2ns < 12.8ns
-1ns + (Tflight-data - Tflight-clk)MIN >0.5ns 整理得到:
1.5ns < (Tflight-data - Tflight-clk) < 8.3ns
基于以上結論,同時考慮到Vsig = 6inch/ns,可以得到如下結論,當數據信號和時鐘信號走線長度關系滿足以下關系時,狀態類信號的時序要求將得到滿足:TSTAT信號走線長度比TSCLK長9英寸,但最多不能超過49.8英寸。
● 數據類信號的時序分析
對數據類信號,信號的流向是從鏈路層芯片發送到物理層芯片。
第一步,確定信號工作頻率,對數據類信號,本設計設定其工作頻率為:
Freq=414.72MHz;
與狀態類信號不同的是,數據類信號是雙邊沿采樣,即,一個時鐘周期對應兩次采樣,因此采樣周期為時鐘周期的一半。采樣周期計算方法為:
Tsample = 1/2*Tcycle = 1.2ns;
第二步,從發送端,即鏈路層芯片手冊提取以下參數:
-0.28ns < Tco < 0.28ns;
第三步,從接收端,即物理層芯片資料可以提取如下需求:
Tsetup(min) = 0.17ns;
Thold(min) = 0.21ns;
將以上數據代入式1和式2,需特別注意的是,對數據類信號,由于是雙邊沿采樣,應采用Tsample代替式1中的Tcycle:
0.28ns + (Tflight-data- Tflight-clk)MAX + 0.17ns < 1.2ns
-0.28ns + (Tflight-data- Tflight-clk)MIN>0.21ns
整理得到:
0.49ns < (Tflight-data - Tflight-clk) < 0.75ns
基于以上結論,同時考慮到Vsig = 6inch/ns,可以得到如下結論,當數據信號和時鐘信號走線長度關系滿足以下關系時,數據類信號的時序要求將得到滿足:TDAT、TCTL信號走線長度比TDCLK長2.94英寸,但最多不能超過4.5英寸。
結論
高速電路中的時序設計,雖然看似復雜,然而只要明晰其分析方法,問題可以迎刃而解。
評論