2、存儲器譯碼
那么,我們怎樣來控制各個單元的控制線呢?這個還不簡單,把每個單元元的控制線都引到集成電路的外面不就行了嗎?事情可沒那么簡單,一片27512存儲器中有65536個單元,把每根線都引出來,這個集成電路就得有6萬多個腳?不行,怎么辦?要想法減少線的數量。我們有一種辦法稱這為譯碼,簡單介紹一下:一根線能代表2種狀態,2根線能代表4種狀態,3根線能代表幾種,256種狀態又需要幾根線代表?8種,8根線,所以65536種狀態我們只需要16根線就能代表了。
3、存儲器的選片及總線的概念
至此,譯碼的問題解決了,讓我們再來關注另外一個問題。送入每個單元的八根線是用從什么地方來的呢?它就是從計算機上接過來的,一般地,這八根線除了接一個存儲器之外,還要接其它的器件,如圖4所示。這樣問題就出來了,這八根線既然不是存儲器和計算機之間專用的,如果總是將某個單元接在這八根線上,就不好了,比如這個存儲器單元中的數值是0FFH另一個存儲器的單元是00H,那么這根線到底是處于高電平,還是低電平?豈非要打架看誰歷害了?所以我們要讓它們分離。辦法當然很簡單,當外面的線接到集成電路的管腳進來后,不直接接到各單元去,中間再加一組開關(參考圖4 )就行了。平時我們讓開關關閉著,如果確實是要向這個存儲器中寫入數據,或要從存儲器中讀出數據,再讓開關接通就行了。這組開關由三根引線選擇:讀控制端、寫控制端和片選端。要將數據寫入片中,先選中該片,然后發出寫信號,開關就合上了,并將傳過來的數據(電荷)寫入片中。如果要讀,先選中該片,然后發出讀信號,開關合上,數據就被送出去了。注意圖4,讀和寫信號同時還接入到另一個存儲器,但是由于片選端不一樣,所以雖有讀或寫信號,但沒有片選信號,所以另一個存儲器不會“誤會”而開門,造成沖突。那么會不一樣時選中兩片芯片呢?只要是設計好的系統就不會,因為它是由計算控制的,而不是我們人來控制的,如果真的出現同時出現選中兩片的情況,那就是電路出了故障了,這不在我們的討論之列。
從上面的介紹中我們已經看到,用來傳遞數據的八根線并不是專用的,而是很多器件大家共用的,所以我們稱之為數據總線,總線英文名為BUS,總即公交車道,誰者能走。而十六根地址線也是連在一起的,稱之為地址總線。
半導體存儲器的分類
按功能能分為只讀和隨機存取存儲器兩大類。所謂只讀,從字面上理解就是只能從里面讀,不能寫進去,它類似于我們的書本,發到我們手回之后,我們只能讀里面的內容,不能隨意更改書本上的內容。只讀存儲器的英文縮寫為ROM(READ ONLY MEMORY)
所謂隨機存取存儲器,即隨時能改寫,也能讀出里面的數據,它類似于我們的黑板,我能隨時寫東西上去,也能用黑板擦擦掉重寫。隨機存儲器的英文縮寫為RAM(READ RANDOM MEMORY)這兩種存儲器的英文縮寫一定要記牢。
注意:所謂的只讀和隨機存取都是指在正常工作情況下而言,也就是在使用這塊存儲器的時候,而不是指制造這塊芯片的時候。不然,只讀存儲器中的數據是怎么來的呢?其實這個道理也很好理解,書本拿到我們手里是不能改了,能當它還是原材料——白紙的時候,當然能由印刷廠印上去了。
順便解釋一下其它幾個常見的概念。
PROM,稱之為可編程存儲器。這就象我們的練習本,買來的時候是空白的,能寫東西上去,可一旦寫上去,就擦不掉了,所以它只能用寫一次,要是寫錯了,就報銷了。(現在已經被淘汰)
EPROM,稱之為紫外線擦除的可編程只讀存儲器。它里面的內容寫上去之后,如果覺得不滿意,能用一種特殊的辦法去掉后重寫,這就是用紫外線照射,紫外線就象“消字靈”,能把字去掉,然后再重寫。當然消的次數多了,也就不靈光了,所以這種芯片能擦除的次數也是有限的——幾百次吧。(現在已經被淘汰)
EEPROM,也叫 E2PROM稱之為電可擦可編程只讀存儲器,它和EEPROM類似,寫上去的東西也能擦掉重寫,但它要方便一些,不需要光照了,只要用電就能擦除或者重新改寫數據,所以就方便許多,而且壽命也很長(幾萬到幾十萬次不等)。
FLASH,稱之為閃速存儲器,屬于EEPROM的改進產品,它的最大特點是必須按塊(Block)擦除(每個區塊的大小不定,不同廠家的產品有不同的規格), 而EEPROM則可以一次只擦除一個字節(Byte)。FLASH現在常用于大容量存儲,比如u盤
再次強調,這里的所有的寫都不是指在正常工作條件下。不管是PROM還是EPROM,它們的寫都要有特殊的條件,一般我們用一種稱之為“編程器”的設備來做這項工作,一旦把它裝到它的工作位置,就不能隨便改寫了。
4:第一個單片機小程序
上一次我們的程序實在是沒什么用,要燈亮還要重寫一下片子,下面我們要讓燈持續地閃爍,這就有一定的實用價值了,比如能把它當成汽車上的一個信號燈用了。怎樣才能讓燈持續地閃爍呢?實際上就是要燈亮一段時間,再滅一段時間,也就是說要P10持續地輸出高和低電平。怎樣實現這個要求呢?請考慮用下面的指令是否可行:
SETB P10
CLR P10 ……
這是不行的,有兩個問題,第一,計算機執行指令的時間很快,執行完SETB P10后,燈是滅了,但在極短時間(微秒級)后,計算機又執行了CLR P10指令,燈又亮了,所以根本分辨不出燈曾滅過。第二,在執行完CLR P10后,不會再去執行SETB P10指令,所以以后再也沒有機會讓滅了。
為了解決這兩個問題,我們能做如下設想,第一,在執行完SETB P10后,延時一段時間(幾秒或零點幾秒)再執行第二條指令,就能分辨出燈曾滅過了。第二在執行完第二條指令后,讓計算機再去執行第一條指令,持續地在原地兜圈,我們稱之為“循環”,這樣就能完成任務了。
以下先給出程序(后面括號中的數字是為了便于講解而寫的,實際不用輸入):
;主程序:
LOOP: SETB P10 ;(1)
LCALL DELAY ;(2)
CLR P10 ;(3)
LCALL DELAY ;(4)
AJMP LOOP ;(5)
;以下子程序
DELAY: MOV R7,#250 ;(6)
D1: MOV R6,#250 ;(7)
D2: DJNZ R6,D2 ;(8)
DJNZ R7,D1 ;(9)
RET ;(10)
END ;(11)
按上面的設想分析一下前面的五條指令。
第一條是讓燈滅,第二條應當是延時,第三條是讓燈亮,第四條和第二條一模一樣,也是延時,第五條應當是轉去執行第一條指令。第二和第四條實現的原理稍后談,先看第五條,LJMP是一條指令,意思是轉移,往什么地方轉移呢?后面跟的是LOOP,看一下,什么地方還有LOOP,對了,在第一條指令的前面有一個LOOP,所以很直觀地,我們能認識到,它要轉到第一條指令處。這個第一條指令前面的LOOP被稱之為標號,它的用途就是給這一行起一個名字,便于使用。是否一定要給它起名叫LOOP呢?當然不是,起什么名字,完全由編程序的人決定,能稱它為A,X等等,當然,這個時候,第五條指令LJMP后面的名字也得跟著改了。
第二條和第四條指令的用途是延時,它是怎樣實現的呢?指令的形式是LCALL,這條指令稱為調用子程序指令,看一下指令后面跟的是什么,DELAY,找一下DELAY,在第六條指令的前面,顯然,這也是一個標號。這條指令的作用是這樣的:當執行LCALL指令時,程序就轉到LCALL后面的標號所標定的程序處執行,如果在執行指令的過程中遇到RET指令,則程序就返回到LCALL指令的下面的一條指令繼續執行,從第六行開始的指令中,能看到確實有RET指令。在執行第二條指令后,將轉去執行第6條指令,而在執行完6,7,8,9條指令后將遇到第10條令:RET,執行該條指令后,程序將回來執行第三條指令,即將P10清零,使燈亮,然后又是第四條指令,執行第四條指令就是轉去執行第6,7,8,9,10條指令,然后回來執行第5條指令,第5條指令就是讓程序回到第1條開始執行,如此周而復始,燈就在持續地亮、滅了。
在標號DELAY標志的這一行到RET這一行中的所有程序,這是一段延時程序,大概延時零點幾秒,至于具體的時間,以后我們再學習如何計算。 程序的最后一行是END,這不是一條指令,它只是告訴我們程序到此結束,它被稱為“偽指令”。
單片機內部結構分析:為了知道延時程序是如何工作的,我們必需首先了解延時程序中出現的一些符號,就從R1開始,R1被稱之為工作寄存器。什么是工作寄存器呢?讓我們從現實生活中來找找答案。如果出一道數學題:123+567,讓你回答結果是多少,你會馬上答出是690,再看下面一道題:123+567+562,要讓你要上回答,就不這么不難了吧?我們會怎樣做呢?如果有張紙,就不難了,我們先算出123+567=690,把690寫在紙上,然后再算690+562得到結果是1552。這其中1552是我們想要的結果,而690并非我們所要的結果,但是為了得到最終結果,我們又不得不先算出690,并記下來,這其實是一個中間結果,計算機中做運算和這個類似,為了要得到最終結果,一般要做很多步的中間結果,這些中間結果要有個地方放才行,把它們放哪呢?放在前面提到過的ROM中能嗎?顯然不行,因為計算機要將結果寫進去,而ROM是不能寫的,所以在單片機中另有一個區域稱為RAM區(RAM是隨機存取存儲器的英文縮寫),它能將數據寫進去。 特別地,在MCS-51單片機中,將RAM中分出一塊區域,稱為工作寄存器區。
評論