6n138引腳圖
6n138特征
描述:
高共模瞬態免疫力非常高電流比與5300 VRMS絕緣一起通過耦合和集成高增益的LED實現采用8引腳雙列直插式封裝的光電探測器。用于光電二極管和輸出級啟用的獨立引腳TTL兼容飽和電壓高速操作。
進入基地終端可以調整增益帶寬。
6N138非常適合TTL應用,因為300%最小電流傳輸比率,LED電流為1.6 mA可以使用一個裝置和一個裝置進行操作用一個2.2kΩ的上拉電阻進行負載。
6N139最適合低功耗邏輯應用涉及CMOS和低功耗TTL。 400%的電流保證僅有0.5mA的LED電流的傳輸比從0°C到70°C。
注意:由于該設備的幾何尺寸較小,應該是采用靜電放電(ESD)預防措施進行處理。正確接地將防止進一步的損壞和/或降級可能是由ESD引起的。
電氣特性
封裝
6n138應用電路圖(一)
變頻器根據主電路的設計不同,可以分為交-交、交-直-交變頻器和電壓型、電流型變頻器,它們均有各自的特點。變頻器的電流流入改善功率因數用的電容器,由于其充電電流造成變頻器過電流(OCT),所以不能起動,作為對策,請將電容器拆除后運轉,甚至改善功率因數,在變頻器的輸入側接入AC電抗器是有效的。本文設計的變頻器屬于交-直-交電壓型,它的主電路由三相全波整流、電容濾波和智能功率模塊PM20CSJ060所構成,如圖1所示。
PM20CSJ060內部集成6個IGBT、柵極驅動電路、欠電壓、過流、過熱、短路等保護電路以及故障信號輸出電路。P, N分別為直流輸入正負端;U, V, W為三相交流電壓輸出端;VUP1~VUPC, VVP1~VVPC, VWP1~VWPC, VN1~VNC是4組獨立的驅動電源,前3組分別供給U, V, W 3個上橋臂元件,第4組電源供給3個下橋臂元件和制動回路元件;UP, VP,WP, UN, VN, WN分別為6個IGBT的基極驅動輸入信號,它們都是低電平有效的電平信號,與外部控制電路之間通過光電隔離;F0是IPM模塊內故障檢測電路的輸出信號,當其為低電平時,表示模塊發生了過流、短路、欠電壓或過熱中的某種故障,它只是向外部控制電路提供指示信號,即使外部控制電路不采取措施,模塊也會通過自保護電路封鎖基極驅動信號,從而將自己保護起來。
圖1 變頻器主電路
1) 控制電路設計
變頻器控制電路以ARM單片機LPC2292為控制核心,主要由電源電路、交流電壓電流檢測電路、直流電壓檢測電路、故障檢測與處理電路、PWM脈沖輸出電路、LCD顯示和鍵盤輸入電路等構成。使用的交流供電電源,無論是用于家庭還是用于工廠,其電壓和頻率均200V/60Hz(50Hz)或100V/60Hz(50Hz),等等。通常,把電壓和頻率固定不變的交流電變換為電壓或頻率可變的交流電的裝置稱作“變頻器”。為了產生可變的電壓和頻率,該設備首先要把電源的交流電變換為直流電(DC)。把直流電(DC)變換為交流電(AC)的裝置,其科學術語為“inverter”(逆變器)。由于變頻器設備中產生變化的電壓或頻率的主要裝置叫“inverter”,故該產品本身就被命名為“inverter”,即:變頻器,變頻器也可用于家電產品。使用變頻器的家電產品中不僅有電機(例如空調等),還有熒光燈等產品。用于電機控制的變頻器,既可以改變電壓,又可以改變頻率。但用于熒光燈的變頻器主要用于調節電源供電的頻率。汽車上使用的由電池(直流電)產生交流電的設備也以“inverter”的名稱進行出售。變頻器的工作原理被廣泛應用于各個領域。例如計算機電源的供電,在該項應用中,變頻器用于抑制反向電壓、頻率的波動及電源的瞬間斷電。
電源電路
控制電路所需的電源除了4組IGBT驅動電源+15V以外,單片機LPC2292本身也需要工作電源,其CPU內核需要+1.8V電源;I/O端口需要+3.3V電源。因此控制電路需要3種電壓的電源。4組+15V的電源我們是通過4個三端穩壓器LM7815來實現的;而+1.8V和+3.3V電源則利用三端穩壓器LM7805和LDO芯片(低壓差電源芯片)共同來實現。
交流電流電壓檢測電路
交流側的每相電流檢測采用的是TA17系列電流互感器TA17-04,由運算放大電路將互感器輸出的電流信號轉換成對應的電壓信號,供單片機采樣。圖2(a)所示的是其中A相的電流檢測電路。TA17-04的輸入電流范圍為0~40A,輸出電流范圍為0~20mA,而單片機的采樣電壓范圍為0~3V,所以取反饋電阻Rf1=150Ω。
圖2交流電流電壓檢測電路
直流電壓檢測電路
直流電壓檢測是通過取濾波電容兩端電壓,經過電阻分壓后轉換成0~5V電壓信號,然后經過線性光電耦合器6N138整定為0~3V的電壓信號,通過電壓跟隨器輸出供單片機A/D通道采樣。
故障檢測與處理電路
PM20CSJ060有自保護功能,當出現過流、欠壓、短路或過熱時,IMP的柵極驅動單元就會關斷電流并輸出一個故障信號(FO);當U, V或W相的任一個上橋臂出現故障時,也會從相應的輸出端輸出故障信號,另外系統增加的過壓/欠壓保護電路也有兩個故障輸出端。
PWM脈沖輸出電路
驅動IPM內部的六路IGBT的PWM脈沖先是從LPC2292內部PWM脈寬調制器輸出的,然后通過光耦隔離后再送到IMP的六路脈沖輸入端。
2)保護電路的設計
雖然PM20CSJ060有過流、欠壓、短路或過熱等自保護功能,但為了提高系統的可靠性和更好地保護IGBT,我們還是增加了一套快速而準確的保護環節以防止各種故障的發生對系統造成的損壞。
欠壓/過壓保護電路
由于IGBT集電極與發射極之間的耐壓和承受反向壓降的能力有限,而電網的電壓波動非常大,從而會導致直流回路過壓或欠壓,因此要設置直流電壓欠壓/過壓保護電路,以保護IGBT和其他元件不被損壞。系統設計的欠壓/過壓保護電路,如圖3所示。圖中6N138為一個線性光電隔離器,輸出電壓信號與直流回路電壓成正比,當直流回路電壓過低時,從6N138的VO端輸出一個較低電壓,與臨界欠電壓值相比較,小于則經比較器LM393比較后輸出低電平的欠壓故障信號;當直流回路電壓過高時,從6N138的VO端輸出一個較高電壓,與臨界過電壓值相比較,大于則經比較器LM393比較后也輸出低電平的過壓故障信號。
圖3欠壓/過壓保護電路
限流起動保護電路
此電路是用來防止在電機起動過程中,電容充電電流過大而損壞整流管。當電機起動時,起動電流很大,為了保護整流管,在主電路上串了一個限流電阻R1,定時15s后,單片機就控制繼電器將常開觸點閉合,使限流電阻R1短路,結束限流起動過程,進入正常運行狀態。
泵升電壓保護電路
當電機負載進入制動狀態時,反饋電流將向中間直流回路電容充電,導致直流電壓上升,產生所謂的泵升電壓。如果不對此電壓進行限制,它將造成IGBT的永久損壞。產生泵升電壓是電機制動過程不可避免的現象。
?
評論