女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

人工智能自動設計的芯片不輸工程師

電子工程師 ? 來源:cc ? 2019-01-30 14:46 ? 次閱讀

創天科技、清華大學、西安電子科技大學和杭州電子科技大學剛剛聯合發布的一篇論文,提出了一種新的神經網絡架構,讓AI在不聲不響間,又掌握了新的技能:設計微波集成電路

這個全新的神經網絡架構名叫“關系歸納神經網絡”,能夠總結和歸納微波集成電路內在的電磁規律,自己學會設計和調試,結果顯示,AI設計的集成電路性能完全可以媲美最好的人類設計師。

我國的集成電路產業在國家的大力扶持下經歷了高速的發展,但與世界先進水平還有著差距,從2013年至今我國每年集成電路的進口額超過了石油,成為第一大宗進口商品。歐美各國為鞏固其優勢地位,尤其為了削弱我國在新一代電子信息技術、半導體集成電路領域的快速發展的能力,不約而同的采取措施,力求最大限度的制約我國研發或生產高端芯片及元器件

同時,美國為了保證自己在芯片產業的核心地位,2018年7月,美國首次“電子復興計劃”峰會(ERI Summit)在舊金山拉開帷幕。由美國國防部高級研究計劃局DARPA組織。這次大會上,美國的電子復興五年計劃,選出了第一批入圍扶持項目:電子裝置的智能設計(IDE Automation)。IDEA旨在創建一個“無需人工參與”(no human in the loop)的芯片布局規劃(layout)生成器,讓沒什么專業知識的用戶也能在一天內完成硬件設計。而DARPA的愿景,是最終讓機器取代人類進行芯片設計。

現在高水準的集成電路AI已經在中國出現了。

集成電路AI難在哪里?

在最新披露的論文里,創天科技表示雖然AlphaGo已經是AI里程碑,但下圍棋與現實世界相比,仍然是一個非常簡單的問題。

更復雜的問題是微波集成電路,微波集成電路是在電路板上采用特定的工藝制造大量高精度微米納米級的電路,電路之間存在復雜的電磁效應,微觀下的微小的擾動往往會帶來宏觀特性的巨大差異。圍棋的動作空間約為10^250。集成電路的狀態空間超過10^10000。

微波集成電路(MWIC)的自動化設計一直以來都被視為人工智能的一個基本挑戰,因為它的解空間和結構復雜度都比圍棋要大的多。在這里,我們開發了一種新型的人工智能體(稱為關系歸納神經網絡),它可以實現微波集成電路的自動化設計,避免暴力計算每一個可能的解決方案,這是電子領域的一個重大突破。通過對微波傳輸線電路、濾波電路和天線電路設計任務的實驗,分別得出了具有較強競爭力的結果。與傳統的強化學習方法相比,該學習曲線表明,該人工智能體能夠快速收斂到符合要求的集成電路模型,斂速度可達4個數量級。這項研究首次展示了一個智能體在沒有任何人類先驗知識的情況下,通過訓練或學習,自動歸納微波集成電路內部結構之間的關系。值得注意的是,智能體自行歸納和總結的規律在電路的結構原理和電磁場原理等方面是可解釋的。。我們的工作跨越了人工智能和集成電路之間的鴻溝,未來可以擴展到機械波、力學和其他相關領域。

來看看AI是怎么設計集成電路的

微波集成電路是人類工程師的智力勞動,是智慧、經驗和直覺碰撞出的火花。對于工程師來說,利用計算機輔助設計工具發現問題、解決問題進而尋找最優解決方案,這個過程是及其繁瑣枯燥的,更重要的是受限于人類生理結構,即使焦頭爛額地使忙于各種方案分析、設計、優化也沒辦法達到最優解決方案。如何使人類工程師徹底擺脫這項繁瑣的優化設計工作是一項非常有意義的挑戰。

目前,研究者都是人為抽象出電路的參數,再基于機器學習技術優化這些參數。但是這樣的方法存在兩個問題:首先人為抽象的參數是一項耗時、費力的工作,且抽象出的參數還有可能不夠準確,掩蓋電路的一些重要特征;其次,使用人為抽象的參數進行優化會大大限制機器的想象力和探索空間,最終得到的結果往往很難超越人類的水平。

近年來,人工智能在數據挖掘、計算機視覺、自然語言處理等多個應用領域取得了成功。作為AI的一個子領域,基于深度神經網絡的強化學習技術已逐漸從單純的學術研究轉向應用,如經典視頻游戲、棋盤游戲、機器翻譯和藥物設計。然而,人工智能與集成電路設計領域的結合仍然是一個空白。由于集成電路結構復雜,求解空間大,需要大量的數據來學習設計決策過程,傳統的強化學習算法難以收斂。因此,我們設計了一個稱為關系歸納神經網絡的架構,它可以快速有效地學習集成電路內部數據之間的規律,從而達到設計任意復雜集成電路的目的。更具體地說,集成電路形狀被定義為一組參數化網格,當每個網格發生變化時,由標準的CAE軟件包(如ADS或ANSYS EM)計算出結果,然后,使用聚類算法對這些結果的變化進行分類,最后交由強化學習神經網絡進行決策。

集成電路AI背后的算法

AI學會設計集成電路,靠的是什么手段?答案是,一個基于聚類和異步的優勢行動者評論家算法模型。

圖 1 | 關系歸納神經網絡架構. a, 聚類算法的數據集,即網格模型的S參數變化矩陣。B,聚類算法。C、網格化的模型和S參數矩陣訓練深度強化學習模型。d,以c為輸入,以動作的概率向量π和價值標量v為輸出的深度強化學習模型。

基于關系歸納神經網絡的微波集成電路模型設計框架如圖1所示,其包含兩部分:聚類算法(圖1b)和強化學習神經網絡模型(圖1d)。在本框架中,聚類算法用來對網格化的集成電路的設計動作進行劃分,即對集成電路的多個設計動作聚成幾個典型的動作類,類似于經驗豐富的集成電路模型設計師對模型的參數化設置;強化學習模型(采用A3C算法)基于聚類算法劃分的典型動作簇作為策略網絡輸出的動作類別,預測當前集成電路模型的設計動作,然后再由價值網絡評估該設計動作的好壞,以找出最優策略,從而達到自動設計微波集成電路的技術功效。

最后看下

人類的設計和AI的設計有何區別吧!

通過對人類工程師設計的集成電路模型與AI設計的集成電路模型的對比(見圖2),可以看出人類工程師設計的集成電路是規則的,其參數數量是有限的。AI設計的電路是不規則的,參數多,自由度高,形狀更趨近于自然形成。實際上,AI能夠學習抽象出影響電路性能的關鍵參數,并掌握各種各樣的設計任務。因此,AI僅接收網格化電路模型和S參數矩陣作為其輸入就能夠達到與專業工程師相當的水平。

圖2人類設計的集成電路與AI設計的集成電路

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 芯片
    +關注

    關注

    459

    文章

    52145

    瀏覽量

    435807
  • 人工智能
    +關注

    關注

    1804

    文章

    48677

    瀏覽量

    246251

原文標題:AI自動設計的芯片誕生了,不輸工程師

文章出處:【微信號:BIEIqbs,微信公眾號:北京市電子科技情報研究所】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦
    熱點推薦

    問,成為硬件工程師需要幾只手?#硬件工程師 #YXC晶振 #揚興科技 #搞笑

    硬件工程師
    揚興科技
    發布于 :2025年04月25日 17:15:37

    一招拿捏電子工程師#被AI拿捏了 #電子工程師 #電子電工

    電子工程師
    安泰小課堂
    發布于 :2025年03月25日 17:30:51

    嵌入式軟件工程師就業好不好?

    嵌入式軟件工程師就業好不好?會不會越老越吃香?今天一起來看看。 首先看下市場需求。 隨著物聯網、人工智能、5G等前沿技術的快速發展,嵌入式系統的應用領域不斷擴大,從智能家居、汽車電子到工業自動
    發表于 02-20 10:19

    人工智能工程師高頻面試題匯總——機器學習篇

    隨著人工智能技術的突飛猛進,AI工程師成為了眾多求職者夢寐以求的職業。想要拿下這份工作,面試的時候得展示出你不僅技術過硬,還得能解決問題。所以,提前準備一些面試常問的問題,比如機器學習的那些算法
    的頭像 發表于 12-04 17:00 ?1351次閱讀
    <b class='flag-5'>人工智能</b><b class='flag-5'>工程師</b>高頻面試題匯總——機器學習篇

    嵌入式和人工智能究竟是什么關系?

    嵌入式和人工智能究竟是什么關系? 嵌入式系統是一種特殊的系統,它通常被嵌入到其他設備或機器中,以實現特定功能。嵌入式系統具有非常強的適應性和靈活性,能夠根據用戶需求進行定制化設計。它廣泛應用于各種
    發表于 11-14 16:39

    Tenstorrent與日本合作:五年內培訓200名日本芯片工程師

    美國人工智能(AI)芯片初創公司Tenstorrent近日宣布,已與日本政府達成了一項重要協議。根據該協議,Tenstorrent將在未來五年內,于其美國辦事處為多達200名日本芯片工程師
    的頭像 發表于 11-06 14:30 ?765次閱讀

    《AI for Science:人工智能驅動科學創新》第6章人AI與能源科學讀后感

    幸得一好書,特此來分享。感謝平臺,感謝作者。受益匪淺。 在閱讀《AI for Science:人工智能驅動科學創新》的第6章后,我深刻感受到人工智能在能源科學領域中的巨大潛力和廣泛應用。這一章詳細
    發表于 10-14 09:27

    《AI for Science:人工智能驅動科學創新》第一章人工智能驅動的科學創新學習心得

    周末收到一本新書,非常高興,也非常感謝平臺提供閱讀機會。 這是一本挺好的書,包裝精美,內容詳實,干活滿滿。 《AI for Science:人工智能驅動科學創新》這本書的第一章,作為整個著作的開篇
    發表于 10-14 09:12

    risc-v在人工智能圖像處理應用前景分析

    RISC-V在人工智能圖像處理領域的應用前景十分廣闊,這主要得益于其開源性、靈活性和低功耗等特點。以下是對RISC-V在人工智能圖像處理應用前景的詳細分析: 一、RISC-V的基本特點 RISC-V
    發表于 09-28 11:00

    名單公布!【書籍評測活動NO.44】AI for Science:人工智能驅動科學創新

    芯片設計的自動化水平、優化半導體制造和封測的工藝和水平、尋找新一代半導體材料等方面提供幫助。 第6章介紹了人工智能在化石能源科學研究、可再生能源科學研究、能源轉型三個方面的落地應用。 第7章從環境監測
    發表于 09-09 13:54

    報名開啟!深圳(國際)通用人工智能大會將啟幕,國內外大咖齊聚話AI

    8月28日至30日,2024深圳(國際)通用人工智能大會暨深圳(國際)通用人工智能產業博覽會將在深圳國際會展中心(寶安)舉辦。大會以“魅力AI·無限未來”為主題,致力于打造全球通用人工智能領域集產品
    發表于 08-22 15:00

    利用人工智能改變 PCB 設計

    人工智能在PCB設計中展現出不可否認的潛力,但是工程師們自然對其影響有所顧慮。關于工作保障和責任的等問題常常浮現:人工智能會奪走我的工作嗎?如果人工智能出錯,我會被指責嗎?然而,
    的頭像 發表于 08-15 10:38 ?827次閱讀
    利用<b class='flag-5'>人工智能</b>改變 PCB 設計

    FPGA在人工智能中的應用有哪些?

    FPGA(現場可編程門陣列)在人工智能領域的應用非常廣泛,主要體現在以下幾個方面: 一、深度學習加速 訓練和推理過程加速:FPGA可以用來加速深度學習的訓練和推理過程。由于其高并行性和低延遲特性
    發表于 07-29 17:05