女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

院士鄔賀銓:深度神經網絡實際上是個分類器

電子工程師 ? 來源:lq ? 2019-01-06 11:12 ? 次閱讀

中國日報網與網易傳媒共同舉辦的2019影響力峰會在北京召開,首屆影響力峰會的主題為“預見未來”。會上,中國工程院院士鄔賀銓擔任“預見科技未來”發布人,發表了主題為“迎接人工智能的未來”的演講。

鄔賀銓院士稱,人工智能技術現在可以做的事情很多,對經濟效益也有很大的貢獻。目前來看,AI應用效果比較好的領域有三個,一是醫療保健,二是汽車,三是金融服務業。

不過,鄔賀銓院士也同時指出,目前機器學習還有很多不足,一個諾貝爾獎經濟學獎得主(Judea Pear)說“人工智能不過是統計學”,還是有很多不足的地方。

對于人工智能下一步如何進化,鄔賀銓院士引用清華大學張鈸院士的觀點說,我們要把感知和認知放到同一個空間里,不是簡單用概率統計的理論,要用模糊級的理論來重新定義它。或者,發展群體智能。

鄔賀銓院士在演講中表示,互聯網已經是第50年了,50年的互聯網到現在還保持互聯網流量年增60%,這些增速也會對未來人工智能技術的發展有很大的影響。“人工智能會使得我們的生活更美好,或是走到我們的反面,這一切取決于人類自己。”鄔賀銓說到,人工智能永遠在路上,這也就是人工智能的魅力。(小羿)

以下為鄔賀銓院士演講實錄(網易智能做了不改動原意的整理):

各位領導、各位專家早上好。我發言的題目是“迎接人工智能的未來”。

我們可以看看支撐人工智能發展的技術,比如CPU的芯片、存儲器、光纖、移動通信、超算、大數據??用十年的時間來看,有些是60多倍,有些是成本兩萬倍下降,光纖通信10年100倍容量提升,移動通信10年1000倍的速率提升,超算能力1000倍的提升,算法我在這里沒寫,但等會兒會說到,大數據量大概是32倍的提升。這是前幾年統計下來的網絡主要設備年均性能改進的增速。

互聯網已經是第50年了,50年的互聯網到現在還保持互聯網流量年增60%,這些增速也會對未來人工智能技術的發展給予很大的影響。

01

深度神經網絡實際上是個分類器

現在深度神經網絡,就算你寫本書告訴計算機什么是貓什么是狗,它也學不會,但如果像對待人類小孩的教學方式那樣,感性地把一堆貓和狗的視頻送到深度神經網絡,它就會分類,分類結束后,如果照片視頻上有標簽,它就會知道分的這類是貓。如果籃子里有個小狗,放進去,它照樣會分類為“狗”。所以深度神經網絡實際上是個分類器,當你告訴它是什么,它就學會了。

機器學習是深度神經網絡的主要技術,從近10年里機器學習的論文里可以發現,現在機器學習的技術熱點,可以看到神經網絡和進化編程等計算密集型算法在機器學習研究中的出色表現。

人每天吃飯大概要輸入2500卡路里的能量,卡路里換算成焦耳大概是1000萬焦耳,下圍棋5個小時大概要消耗人類3.3兆焦耳。AlphaGo跟李世石下棋時用了1000多個CPU,176個GPU,一個CPU功率100W,1個GPU200W,換算出來是173000W(這是以秒計的),如果5小時就是3000兆焦耳,這相當于李世石用的能耗是AlphaGo能耗的千分之一,也就是說,人工智能目前還需要很大的能量支持。

后來隔了一年,改進了AlphaGo Zero,換算成TPU,它只是AlphaGo原有1/12(能耗),用1/12的能耗跟AlphaGo下棋,100比0,當時AlphaGo還要搜集所有的圍棋棋譜,然后訓練三個月,AlphaGoZero只需要了解圍棋的規則,兩個AlphaGoZero互相對應,能把所有人類沒有走過的棋譜都走完,它就能戰勝了。所以優化算法、改進硬件,包括GPU替換CPU(提高了三倍),TPU替換GPU(提高了15到30倍)。

最近不單AlphaGo Zero圍棋天下無敵,而且通過自學2個小時,還擊敗了日本的將棋(有點像中國的象棋),自學4個小時,把國際象棋也全部打贏了。

02

人工智能能做的事情有太多

在醫學上,剛剛過去的三個月,谷歌在機器學習又開發了Alpha Fold,Alpha Go的折疊,所謂折疊是來預測蛋白質結構的,在蛋白質結構預測的國際競賽里,打敗了所有由人組成的各種團隊,這有什么意義?如果能解釋蛋白質的結構,我們的很多疾病(包括癌癥)可能就會找到解決辦法。所以現在很多人工智能用在醫學上開發藥物,美國人工智能能比醫生提早六年診斷出阿茲海默病,醫療人工智能的器械也開始投入商用了。除此之外我們看一看蛋白質折疊結構,我們可以通過人工智能將它解釋出來。

我們知道門捷列夫開發元素周期表用了很長時間,現在假設我們不知道元素周期表,利用人工智能程序,幾個小時就可以把元素周期表重新定義出來。也就是說,人工智能確實能做好多事。

語音識別方面,人工智能已經超過了人,一般人類語音識別的錯誤率是5.1%,現在百度對漢語的語音識別,微軟對應于的語音識別已經比這個水平要高了。當然,在嘈雜噪聲環境下,識別率現在也只有54%,不過人更識別不了,人還達不到這個水平。

包括人臉識別,中國上海依圖科技的人臉識別率在萬分之一,誤失率前提下可以通過98%,銀行柜臺人員用肉眼比對,誤差一般在1%,也就是說機器準確性是超過人的眼睛的。

當然,動態三維活體檢測更難,下面的圖是小布什的原相,右邊的小部什頭像和原圖一樣,但嘴型和上圖的胖子嘴型一樣,我們聽不出胖子講什么,但小布什可以通過口形恢復出他講話的聲音,讀懂唇語。

我們知道張學友在好幾場演唱會上抓到了逃犯,這不是因為張學友,而是演唱會門口的人臉識別門口。所以張學友說“抓逃犯是我的正業,唱歌只是副業”。

機器視覺應用于什么?這是一個肺部CT照片,大家可以從中發現有沒有長瘤子、有沒有癌癥,但CT可以掃描出幾百張圖片,很麻煩。我們通過人工智能把這些CT照片還原成一個肺,看看有沒有纖維化,再看看肺周邊的器官怎么樣。

語音識別可以用于醫學,還有圖像識別,可以重建三維影像,比如醫學教育,包括在增進醫療手術的輔導可以起到很好的作用。

在產業上,清華和英業達合作(做影像電路板的),影像電路板很復雜,可以看看該連的線是不是連了,不該連的線是不是沒連,人的肉眼很容易錯檢,但利用機器視覺就可以發覺人的肉眼沒法兒發現的問題,每年的經濟效益9000萬。

03

看好AI在醫療保健、汽車和金融服務的應用,但挑戰很大

人工智能對經濟效益的貢獻,有一些統計,人工智能可以改進勞動生產率,可以激發消費需求、可以提高產品質量,有人預測2017到2030年,人工智能對勞動生產率的貢獻超過GDP的55%,其中中國占了全球將近一半,2030年人工智能會帶來7萬億美元的GDP增長貢獻,占GDP的26.1%,這個數字來源于普華永道,這里面講了幾個領域,是最重要的人工智能應用領域。

AI指數比較高的應用效果比較好的領域是:一是醫療保健,二是汽車,三是金融服務業。

自動駕駛為例,麥肯錫估計2025年帶來的經濟規模將達到萬億美元,降低交通事故,每年能挽救3到15萬人的生命,減少廢氣排放90%,麥肯錫還認為到2030年人工智能可以為全球額外貢獻13萬億美元的GDP增長,普華永道的估計是15.7萬億,平均年均GDP會增加1.2%。后面那句話更重要:足以比肩19世紀的蒸汽機、20世紀的工業機器人和21世紀的信息技術。

自動駕駛在簡單路況中是好的,復雜路況就很難,因為行人和司機不見到都遵守交通規則,很難用訓練的辦法掌握,還需要駕駛員的經驗和知識,而且人類犯錯是偶然的,機器一旦犯錯可能就是系統性的。

人工智能可以檢測腫瘤,但醫院還不敢這么用,因為人工智能本身可以告訴你應該做什么,但它不會告訴你為什么,比如人工智能診斷一個病人,最后得出結論“鋸掉一條腿”,但不告訴你為什么,那醫院敢鋸掉腿嗎?

還有很多功能是人工智能難以勝任的,神經網絡是以輸入為導向的算法,首先的前提是大量數據,而且數據要比較準確,如果受了干擾他就很難,醫生受干擾可能會產生很多錯誤,比如北加州一個組織(美國公民自由聯盟)利用亞馬遜面部識別算法把美國535位國會議員的照片和美國警察局掌握的2.5萬名罪犯照片進行比對,發現28個議員被當成了罪犯。分類數據終美國的數據嚴重偏向白人男性,所以黑皮膚的可能就容易被錯認。

目前機器學習還有很多不足,圖靈獎的獲獎者說,目前機器學習只是曲線的擬合,一個諾貝爾獎經濟學獎得主(Judea Pear)說“人工智能不過是統計學”,也就是說目前還是有很多不夠的地方。

剛才我用的兩張圖映射的貓和狗的區別有個曲線,但只要擬合的地方稍微錯一點,可能就會發生錯誤。比如本來是熊貓,在照片上加上一些噪音,機器就可能識別成長臂猿,所以人工智能識別目前來講還是比較嬌氣的。

大家看這張圖,有人看是順時針轉,有人看是逆時針轉,哪怕是同一個人,一會兒看著是順時針轉,眨眨眼睛卻變成了逆時針轉,究竟是順還是逆?其實只是左腿在前還是右腿在前的問題,是你的錯覺。

為什么會出現這個錯覺?因為它正好處于人工智能辨識(包括人辨識)的分界線,這時就可能發生誤導。

比如這個圖里的圓圈,大家都覺得它是滾動的、是圓的,可是真的是這樣嗎?每個球都這樣走嗎?不一定,我們可以看看。實際上每個球走的都是直線,所以人工智能的模型是會被誤導的。

這張圖中最后一個打問號的地方應該放(幾個數字),人很容易看出來應該放哪個,因為第一行232,第二行343,第三行應該是454,可是人工智能就很難看出來,因為人工智能要獲得人類常識不是那么容易的。

04

人工智能的進化與對就業的沖擊

當然,神經網絡現在還在演進,關鍵是怎樣選擇正確框架以及訓練,清華大學的張鈸院士說我們要把感知和認知放到同一個空間里,不是簡單用概率統計的理論,要用模糊級的理論來重新定義它,否則我們沒辦法跟機器人交流,機器人之間也沒辦法交流。

機器學習著重于通過數據了解環境,而人類能夠同時洞悉不同的環境,群體學習是人類與生俱來的本領,而電腦是不具備的。我曾經跟一個搞人工智能的公司說,識別語音、下圍棋都不算什么,能不能組織11人的機器人足球隊,什么時候踢贏皇馬了,那你就算厲害了,因為11人的機器人足球隊是要群體活動的。

剛才談到就業,實際上人工智能確實會取代很多現在的就業,49%的勞動人口可能會被取代,但一半以上的人是不會被取代的,因為人工智能沒有情感,有情感創作的文藝工作是不能被取代的,人工智能不能取代文藝,要由人來做。美國高德納咨詢公司以及世界經濟論壇發布的《2018未來就業》報告中都說,實際上取代了一部分工作,但會新增一些工作崗位。人工智能會帶來數字鴻溝,發達國家、先進企業,還會拉大社會貧富懸殊,高智能崗位會增加,一般勞動崗位會減少,自動駕駛出了問題是誰的責任?機器人創作的小說、詩歌是否享有相應的知識產權?有法律道德的問題,還有安全問題,如果人工智能殺人了怎么辦?

最后,如政府規劃中所說的那樣,加快發展新一代人工智能,是我們贏得全球科技競爭主動權的重要抓略抓手。

清華大學張鈸院士說,我們現在正在通往AI的路上,現在走得并不遠,在出發點附近,但人工智能永遠在路上,大家要有思想準備,而這也就是人工智能的魅力。

人工智能會使得我們的生活更美好,或是走到我們的反面,這一切取決于人類自己。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 語音識別
    +關注

    關注

    39

    文章

    1773

    瀏覽量

    113863
  • 人工智能
    +關注

    關注

    1804

    文章

    48599

    瀏覽量

    246010
  • 分類器
    +關注

    關注

    0

    文章

    152

    瀏覽量

    13394

原文標題:院士鄔賀銓:人工智能的魅力是它永遠在路上

文章出處:【微信號:smartman163,微信公眾號:網易智能】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦
    熱點推薦

    BP神經網絡深度學習的關系

    ),是一種多層前饋神經網絡,它通過反向傳播算法進行訓練。BP神經網絡由輸入層、一或多個隱藏層和輸出層組成,通過逐層遞減的方式調整網絡權重,目的是最小化
    的頭像 發表于 02-12 15:15 ?672次閱讀

    FPGA在深度神經網絡中的應用

    、低功耗等特點,逐漸成為深度神經網絡在邊緣計算和設備端推理的重要硬件平臺。本文將詳細探討FPGA在深度神經網絡中的應用,包括其優勢、設計流程、關鍵技術以及
    的頭像 發表于 07-24 10:42 ?1064次閱讀

    殘差網絡深度神經網絡

    殘差網絡(Residual Network,通常簡稱為ResNet) 是深度神經網絡的一種 ,其獨特的結構設計在解決深層網絡訓練中的梯度消失和梯度爆炸問題上取得了顯著的突破,并因此成為
    的頭像 發表于 07-11 18:13 ?1471次閱讀

    人工神經網絡模型的分類有哪些

    詳細介紹人工神經網絡分類,包括前饋神經網絡、卷積神經網絡、循環神經網絡深度
    的頭像 發表于 07-05 09:13 ?2056次閱讀

    遞歸神經網絡是循環神經網絡

    遞歸神經網絡(Recurrent Neural Network,簡稱RNN)和循環神經網絡(Recurrent Neural Network,簡稱RNN)實際上是同一概念,只是不同的
    的頭像 發表于 07-04 14:54 ?1361次閱讀

    深度神經網絡與基本神經網絡的區別

    在探討深度神經網絡(Deep Neural Networks, DNNs)與基本神經網絡(通常指傳統神經網絡或前向神經網絡)的區別時,我們需
    的頭像 發表于 07-04 13:20 ?1610次閱讀

    bp神經網絡深度神經網絡

    BP神經網絡(Backpropagation Neural Network)是一種常見的前饋神經網絡,它使用反向傳播算法來訓練網絡。雖然BP神經網絡在某些方面與
    的頭像 發表于 07-03 10:14 ?1268次閱讀

    卷積神經網絡分類方法有哪些

    卷積神經網絡(Convolutional Neural Networks,CNN)是一種深度學習模型,廣泛應用于圖像分類、目標檢測、語義分割等計算機視覺任務。本文將詳細介紹卷積神經網絡
    的頭像 發表于 07-03 09:40 ?831次閱讀

    cnn卷積神經網絡分類有哪些

    卷積神經網絡(CNN)是一種深度學習模型,廣泛應用于圖像分類、目標檢測、語義分割等領域。本文將詳細介紹CNN在分類任務中的應用,包括基本結構、關鍵技術、常見
    的頭像 發表于 07-03 09:28 ?1259次閱讀

    卷積神經網絡訓練的是什么

    、訓練過程以及應用場景。 1. 卷積神經網絡的基本概念 1.1 卷積神經網絡的定義 卷積神經網絡是一種前饋深度學習模型,其核心思想是利用卷積操作提取輸入數據的局部特征,并通過多層結構進
    的頭像 發表于 07-03 09:15 ?816次閱讀

    卷積神經網絡的基本結構及其功能

    。 引言 深度學習是機器學習的一分支,它通過模擬人腦神經網絡的結構和功能,實現對數據的自動學習和特征提取。卷積神經網絡深度學習中的一種重
    的頭像 發表于 07-02 14:45 ?3221次閱讀

    什么神經網絡模型適合做分類

    神經網絡是一種強大的機器學習模型,廣泛應用于各種分類任務。在本文中,我們將詳細介紹幾種適合分類任務的神經網絡模型,包括前饋神經網絡、卷積
    的頭像 發表于 07-02 11:14 ?1598次閱讀

    深度神經網絡有哪些主要模型?各自的優勢和功能是什么?

    神經網絡模型及其優勢和功能: 多層感知(Multilayer Perceptron, MLP) 多層感知是一種基本的深度神經網絡,由多個
    的頭像 發表于 07-02 10:01 ?3737次閱讀

    深度神經網絡模型有哪些

    模型: 多層感知(Multilayer Perceptron,MLP): 多層感知是最基本的深度神經網絡模型,由多個全連接層組成。每個隱藏層的
    的頭像 發表于 07-02 10:00 ?2242次閱讀

    卷積神經網絡在文本分類領域的應用

    在自然語言處理(NLP)領域,文本分類一直是一重要的研究方向。隨著深度學習技術的飛速發展,卷積神經網絡(Convolutional Neural Network,簡稱CNN)在圖像識
    的頭像 發表于 07-01 16:25 ?1072次閱讀