女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

電容器的寄生效應對電路有何影響?

TI視頻 ? 作者:工程師郭婷 ? 2018-08-15 01:13 ? 次閱讀

電源紋波和瞬態規格會決定所需電容器的大小,同時也會限制電容器的寄生組成設置。圖1顯示一個電容器的基本寄生組成,其由等效串聯電阻(ESR)和等效串聯電感(ESL)組成,并且以曲線圖呈現出三種電容器(陶瓷電容器、鋁質電解電容器和鋁聚合物電容器)的阻抗與頻率之間的關系。表1顯示了用于生成這些曲線的各個值。這些值為低壓(1V – 2.5V)、中等強度電流(5A)同步降壓電源的典型值。

表1:三種電容器比較情況,各有優點。

低頻下,所有三種電容器均未表現出寄生分量,因為阻抗明顯只與電容相關。但是,鋁電解電容器阻抗停止減小,并在相對低頻時開始表現出電阻特性。這種電阻特性不斷增加,直到達到某個相對高頻為止(電容器出現電感)。鋁聚合物電容器為與理想狀況不符的另一種電容器。有趣的是,它擁有低ESR,并且ESL很明顯。陶瓷電容器也有低ESR,但由于其外殼尺寸更小,它的ESL小于鋁聚合物和鋁電解電容器。

圖1寄生對陶瓷、鋁和鋁聚合物電容器阻抗的改變不同

圖2顯示運作在500kHz下的連續同步調節器模擬的電源輸出電容器波形。它使用圖1所示三種電容器的主要阻抗:陶瓷電容;鋁ESR;鋁聚合物ESL。

紅色線條為鋁電解電容器,其由ESR主導。因此,紋波電壓與電感紋波電流直接相關。藍色線條代表陶瓷電容器的紋波電壓,其擁有小ESL和ESR。這種情況的紋波電壓為輸出電感紋波電流的組成部分。由于紋波電流為線性,因此這導致一系列時間平方部分,并且外形看似正弦曲線。

最后,綠色線條代表紋波電壓,其電容器阻抗由其ESL主導,例如:鋁聚合物電容器等。在這種情況下,輸出濾波器電感和ESL形成一個分壓器。這些波形的相對相位與我們預計的一樣。ESL主導時,紋波電壓引導輸出濾波器電感電流。ESR主導時,紋波與電流同相,而電容主導時,其延遲。現實情況下,輸出紋波電壓并非僅包含來自這些元件中之一的電壓。相反,它是所有三個元件電壓之和。因此,在紋波電壓波形中都能看到其某些部分。

圖2電容器及其寄生要素在連續同步降壓調節器中形成不同的紋波電壓

圖3顯示了一個深度連續反激或者降壓調節器的波形,其輸出電容器電流可以為正和負,而具體狀態會不斷快速變化。紅色線條清楚表明了這種情況,其電壓由這種電流乘以ESR得出,結果則為一種方波。電容器元件的電壓為方波的組成部分。它導致線性充電和放電,如藍色三角波形所示。最后,僅當電流在過渡期間變化時,電容器ESL的電壓才明顯。這種電壓會非常高,取決于輸出電流升時間。請注意,在這種情況下,綠色線條需除以10(假設25 nS電流過渡)。這些大電感尖峰就是在反激或降壓電源中經常出現雙級濾波器的眾多原因之一。

圖3波形隨連續反激或者降壓輸出電流而變化

總之,輸出電容器的阻抗有助于提高紋波和瞬態性能。隨著電源頻率升高,寄生問題的影響更大、更不應忽視。在20kHz附近,鋁電解電容器的ESR大到足以主導電容阻抗。在100kHz時,一些鋁聚合物電容表現出電感。電源進入兆赫茲開關頻率時,請注意所有三種電容器的ESL。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 電源
    +關注

    關注

    185

    文章

    18262

    瀏覽量

    254925
  • 電容器
    +關注

    關注

    64

    文章

    6525

    瀏覽量

    101826
收藏 人收藏

    評論

    相關推薦
    熱點推薦

    超級電容器均壓電路狀況與展望

    壽命的急劇縮短。如果不采取必要的均壓措施,會引起各個單體電容器上電壓較大,采取更多的串聯數來解決問題是不可取的。 1.超級電容器的常用的均壓方法及存在的問題 目前超級電容器均壓電路
    發表于 03-24 15:13

    平滑電容器什么用,平滑電容器正負極嗎

    在電子電路和電力系統中,平滑電容器作為一種關鍵的電子元件,發揮著不可替代的作用。它們通過獨特的濾波功能,有效降低了電路中的噪聲和波動,確保了信號的穩定性和設備的可靠運行。本文將深入探討平滑電容
    的頭像 發表于 01-30 15:25 ?674次閱讀

    電容器的優缺點 鈮電容器與陶瓷電容器比較

    電容器的優缺點 優點: 體積小、重量輕 :鈮電容器通常體積小,重量輕,適合于空間受限的應用。 高穩定性 :鈮電容器具有很好的溫度穩定性和頻率穩定性,適合于需要精確控制的應用。 高可靠性 :由于其
    的頭像 發表于 11-26 14:21 ?623次閱讀

    電容器壽命影響因素分析

    。 陶瓷電容器 :具有較長的壽命,但容量較小,適用于高頻電路。 電解電容器 :容量大,但壽命相對較短,受溫度和電壓影響較大。 薄膜電容器 :壽命較長,穩定性好,適用于低頻
    的頭像 發表于 11-15 10:49 ?1823次閱讀

    高頻電容器的選擇指南 如何測試電容器的好壞

    穩定性。 薄膜電容器 :通常用于需要高電壓和大容量的應用。 電解電容器 :適用于需要大容量和低頻率的應用。 2. 電容值和公差 選擇合適的電容值是至關重要的。
    的頭像 發表于 11-15 10:40 ?1083次閱讀

    閉合電路中含電容器電路分析

    閉合電路中含電容器電路分析是一個相對復雜的問題,因為電容器電路中的行為與其他元件(如電阻、電感)有所不同。以下是對這類
    的頭像 發表于 10-17 10:29 ?1846次閱讀

    如何辨別并聯電容器組中有沒有單個電容器損壞

    辨別并聯電容器組中是否單個電容器損壞,可以通過以下幾種方法進行檢查: 1、電壓測量 : 使用萬用表測量每個電容器的兩端電壓。如果某個電容器
    的頭像 發表于 10-11 14:16 ?1000次閱讀
    如何辨別并聯<b class='flag-5'>電容器</b>組中有沒有單個<b class='flag-5'>電容器</b>損壞

    無極電容器電解質嗎,無極電容器電解質怎么測

    無極電容器通常存在電解質。電解質在無極電容器中起著重要作用,它可以增加電容器電容量和穩定性。然而,電解質也可能帶來一些問題,如漏電和壽命問題。
    的頭像 發表于 10-01 16:45 ?708次閱讀

    超級電容器和普通電容器的區別

    電容器扮演著至關重要的角色。它們在電路中用于能量存儲、濾波、耦合和去耦等。隨著技術的發展,超級電容器作為一種新型的電容器,因其獨特的性能而受到廣泛關注。本文將詳細介紹超級
    的頭像 發表于 09-27 10:27 ?2395次閱讀

    常見的陶瓷電容器的類型哪些?

    電容器是一種兩塊導體中間夾著一塊絕緣體(介質)構成的電子元件。 什么是電容器呢?電容器結構很簡單,由兩塊導體中間夾著一塊絕緣體作為介質從而構成了一個電子元器件。電容器的種類
    的頭像 發表于 09-10 14:15 ?1083次閱讀

    電力電容器容量和涌流有關嗎

    電力電容器的容量和涌流一定關系。涌流是指電容器在合閘瞬間由于電路中電感和電容的相互作用而產生的較大瞬時電流。在
    的頭像 發表于 09-05 14:12 ?675次閱讀
    電力<b class='flag-5'>電容器</b>容量和涌流有關嗎

    你對村田的貼片電容器多少了解?

    你對村田的貼片電容器多少了解?
    的頭像 發表于 08-26 17:57 ?942次閱讀
    你對村田的貼片<b class='flag-5'>電容器</b><b class='flag-5'>有</b>多少了解?

    超級電容器應用領域哪些?

    超級電容器應用領域哪些?超級電容器作為新型的儲能設備,具有比傳統電池更加進步的優點,因此也被廣泛應用于各個領域之中。那么大家知道超級電容器都有哪些應用領域嗎?1、汽車領域在汽車領域中
    的頭像 發表于 06-28 11:29 ?2402次閱讀
    超級<b class='flag-5'>電容器</b>應用領域<b class='flag-5'>有</b>哪些?

    電容器擊穿的特征是什么

    電容器擊穿是指電容器的介質層失去絕緣能力,導致電流突然大幅增加的現象。了解電容器擊穿的特征有助于正確使用電容器,并在設計電路時采取適當的預防
    的頭像 發表于 06-09 17:17 ?2979次閱讀

    負載電容的誤區: 如何選擇合適的電容器?

    在振蕩電路設計中,石英晶體負載電容的正確理解和應用對于保證振蕩器性能至關重要。然而,這一概念常常因為誤解而導致設計上的錯誤。我們首先澄清一些常見的誤區,并提供選擇合適電容器的方法。誤區澄清:1.
    發表于 06-05 11:41