女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

硅光電倍增管在輻射探測領域應用進展綜述

MEMS ? 來源:MEMS ? 2024-11-12 10:27 ? 次閱讀

光子探測技術在高能物理、天體物理、醫學成像等學科領域中扮演著重要的角色。特別是在輻射探測應用中,實現單光子高水平的靈敏探測一直是近幾十年以來光電探測器發展的最終目的。硅光電倍增管(SiPM)技術作為理想固態光子探測器研究領域前所未有的嘗試,憑借其出色的性能(增益高、偏置電壓低、時間響應快速、對磁場不敏感等),吸引著越來越多研究者的關注。

據麥姆斯咨詢報道,中國工程物理研究院流體物理研究所的科研團隊圍繞SiPM的結構原理,回顧、分類、總結了SiPM在結構、性能及應用等方面近年來取得的研究進展。相關研究內容以“硅光電倍增管在輻射探測領域中的應用進展”為題發表在《激光與光電子學進展》期刊上。

SiPM的發展與研究現狀

20世紀90年代Golovin和Sadygov等提出了多像素結構的新光電探測器——SiPM。該模型為當前SiPM在各領域應用表現出的巨大潛力奠定了關鍵基礎。SiPM的關鍵技術發展歷程如圖1所示。

478a0846-9059-11ef-a511-92fbcf53809c.jpg

圖1 SiPM的關鍵技術發展歷程

自21世紀以來,伴隨半導體制造工藝水平的快速發展,無論是SiPM的關鍵技術還是SiPM商業化產品均取得了不錯的成績。以SiPM器件結構發展為例,韓國科學技術院設計了一種新型P-on-N結構SiPM用于藍光探測。該結構以先注入深N阱再注入淺P+阱的方式形成PN結,從而確定了SiPM的有源面積和擊穿電壓VBR。但由于PN結中的無效電場分布,該器件總體上表現出相對較低的光子探測效率(PDE)和相對較高的暗計數率(DCR)。隨后通過改變快速熱處理(RTP)條件和用于結形成的離子注入條件,反向電流降低,擊穿電壓降低了近20%,并且藍光狀態下的PDE提高了近2倍。意大利布魯諾·凱斯勒基金會(FBK)提出了高密度RGB-SiPM結構,各微單元之間設置比外延層厚度更深的溝槽,以完全隔離微單元。深溝槽使高電場區域邊緣與溝槽中心的距離減小至2 μm,使得幾何填充因子顯著提升。國內的各科學研究團隊也在SiPM器件結構上取得了巨大的突破。北京師范大學核科學與技術學院新器件實驗室提出采用外延淬滅電阻代替傳統位于探測器表面的多晶硅淬滅電阻方法,研制了外延電阻淬滅型硅光電倍增管(EQR SiPM),大大減小了表面電阻材料對光的吸收與遮擋,增大了光敏區間,實現了填充因子與探測效率的最大化。

47a567c6-9059-11ef-a511-92fbcf53809c.jpg

圖2 新型SiPM結構的橫截面示意圖:(a)P-on-N結構,(b)RGB-SiPM結構,(c)EQR SiPM結構

目前,在全球范圍內,SiPM產品日漸成熟,延續高探測效率的同時,在光敏面積、暗噪聲、溫度穩定性等方面有了極大的改善,其性能基本滿足各個領域的應用需求。以光敏面積為3 mm×3 mm的SiPM產品為例,全球部分知名生產商的SiPM產品性能參數對比如表1所示。

表1 全球部分SiPM研究機構及知名生產公司SiPM產品一覽

47ced926-9059-11ef-a511-92fbcf53809c.jpg

SiPM原理

單光子雪崩二極管(SPAD工作原理

SiPM由成百上千個相同的SPAD構成,基于雪崩倍增原理實現內部增益。SPAD本質上可以看作一個PN結,其產生的電場強度隨施加的偏置電壓的增大而增大。當偏置電壓過低時,生成的電子-空穴對不會產生額外的倍增。增大偏置電壓使得撞擊光子生成的電子獲得足夠的能量,可以通過電離撞擊生成二次電子-空穴對,獲得較大的倍增。當偏置電壓進一步增大直至高于擊穿電壓VBR時,空穴與電子均將獲得足夠的能量。此時,耗盡層中的單個載流子在強大的電場環境下可以持續發生雪崩現象。一般可以采用串聯淬滅電阻降低電流(被動淬滅)或直接降低偏置電壓直至低于擊穿電壓(主動淬滅)的方法來控制雪崩結束。因此,根據兩端施加偏置電壓的大小,可將SPAD分為3個工作區間,分別是光電二極管區間、雪崩光電二極管區間和SiPM區間,如圖3所示。

47ed5194-9059-11ef-a511-92fbcf53809c.jpg

圖3 SPAD的3種工作模式解析圖

SiPM結構

SiPM也稱為模擬SiPM,基于SPAD同串聯的淬滅電阻形成并聯陣列,SiPM的輸出信號是多個SPAD雪崩信號的疊加。傳統的SiPM架構及電路陣列模型如圖4所示。SiPM的并聯陣列結構克服了SPAD無法從輸出信號中確定有多少光子被探測的缺陷。SiPM的輸出信號直接對應探測到的光子數量,因為每個微單元探測到大于一個光子的可能性很小。目前為增大動態響應范圍,單個通道尺寸一般在10~100 μm。

4806d1aa-9059-11ef-a511-92fbcf53809c.jpg

圖4 SiPM示意圖:(a)傳統SiPM結構,(b)SiPM電路陣列結構

重要參數及特性分析

為了在各應用中實現SiPM的最佳性能,需要對SiPM的重要參數及特性進行定性描述和理解,如探測效率、光學串擾、暗計數率、溫度依賴性。圖5描述了各參數之間的關聯性。

481bdf28-9059-11ef-a511-92fbcf53809c.jpg

圖5 SiPM主要特性參數關系網絡

SiPM也存在許多可能影響其性能的非理想因素。SiPM的噪聲包括主要噪聲源和相關噪聲源2種,它們的波形圖及來源如圖6所示。主要噪聲源是指在無光照條件下,由熱攪動或其他因素隨機產生的電子-空穴對和載流子觸發雪崩倍增效應,導致電流脈沖輸出。暗計數率(DRC)用于表征該信號的頻率。相關噪聲源包括即時串擾、延遲串擾和外部串擾。初級雪崩效應產生的光子直接穿越到相鄰的SPAD并觸發次級雪崩,從而引起即時串擾。即時串擾通常發生在初始雪崩發生的幾百ps之后,很難在波形圖上準確測試。延遲串擾是由于二次雪崩產生的光子被鄰近的SPAD未耗盡層吸收,并擴散到SPAD的倍增區域而產生雪崩效應。該過程的發生需要一定的時間,通常可與主信號區分開,如圖6所示。外部串擾的產生是由于初級雪崩效應產生的光子經外部閃爍體或保護窗的反射回到SPAD。

483580cc-9059-11ef-a511-92fbcf53809c.jpg

圖6 SiPM噪聲示意圖:(a)SiPM噪聲來源,(b)噪聲波形圖

前端電子學系統

前端電子學在各應用中為最大程度發揮SiPM的特性和優點起到重要作用。不適合的前端電子讀出電路將限制SiPM的性能。例如,在高密度的SiPM陣列應用中,使用成熟的單個讀出理想電路是不切實際的。若采用多路合成技術降低讀出通道數,一方面會降低信號讀出速度,另一方面光子時間分辨率會因電子噪聲疊加增大而降低,從而限制了時間精度的準確性。

SiPM在輻射探測領域的應用

近年來,人們對SiPM的研究越發深入,圖7(a)收集、分類、總結了SiPM在各領域學科的應用現狀,主要包括輻射探測、正電子發射斷層掃描、生物成像技術、空間粒子輻射等。圖7(b)是過去20年間在輻射探測領域有關SiPM和光電倍增管(PMT)應用的公開文獻數量統計圖。其結果表明,近10年有關SiPM的研究數量大幅度增長,研究熱度接近甚至超越了PMT。

4854801c-9059-11ef-a511-92fbcf53809c.jpg

圖7 SiPM的研究現狀:(a)SiPM在各領域的應用,(b)近20年輻射探測領域基于SiPM和PMT的公開文獻統計數量對比

中子探測器

中子沒有電荷,即使在高密度金屬中也能穿透得很深。相比于其他類型輻射探測,中子探測可用于評估軟質和凝聚態物質中的晶格,甚至是磁結構和自旋波等。中子的探測技術基于中子誘發核反應。在此反應中,中子被散射原子的原子核俘獲,同時產生具有高能量的次級粒子,這些粒子能夠通過監測次級帶電粒子引起的電離現象實現中子探測。

48716646-9059-11ef-a511-92fbcf53809c.jpg

圖8 基于SiPM的中子閃爍探測器結構圖

正電子發射斷層掃描

正電子發射斷層掃描(PET)是1970年代開發的一種用于觀察體內功能過程的醫學成像技術,通過引入化學示蹤劑來觀察特定組織的功能狀態,目前已經在癌癥影像診斷方面起著至關重要的作用。早期,臨床PET機器中的標準光電探測器是PMT,但是PMT的大尺寸限制了探測器的空間分辨率。SiPM的尺寸微小且對磁場不敏感,可有效提升PET分辨率。飛行時間(ToF)技術為PET提供了更高的圖像質量,通過更精準地識別從正電子湮滅事件到探測器的距離,提供更明確的診斷信息。一個典型的ToF-PET結構如圖9所示,它由30個檢測塊組成,具有3840個通道。其中,每個檢測塊由兩個探測模塊和一個前端模塊組成,該前端模塊由兩個配備專用集成電路和SiPM接口的電路板以及一個ASIC接口板組成。

4890eb4c-9059-11ef-a511-92fbcf53809c.jpg

圖9 典型ToF-PET單元結構圖

其他應用

除了上述應用,Santangelo等測試了SiPM應用于生物傳感技術的檢測低熒光水平的能力。分別測試了DNA微陣列的干燥樣本和實時聚合酶鏈式反應(PCR)的液體樣本的系統線性情況。結果表明,SiPM比傳統的探測器具有更高的靈敏度。在生物發光檢測分析中,SiPM的應用也取得了關鍵性成果,如圖10所示。

48b0e938-9059-11ef-a511-92fbcf53809c.jpg

圖10 SiPM在生物傳感熒光探測的應用

總結與展望

20世紀90年代快速發展的SiPM技術打開了輻射探測領域的新紀元。與PMT相比,SiPM具有更緊密的結構、更低的偏置電壓、更高的增益、更好的磁場靈敏度。作為在弱光探測應用中的單光子探測器,SiPM已經逐步開始取代PMT,成為在核物理、高能物理試驗中的首要選擇。以SiPM的基本工作原理為基礎,展開討論了重要參數的影響,著重分析論述了近年來SiPM在輻射探測方面應用的最新進展。

當前,我國在SiPM方面已經具備了一定的技術儲備,但是依舊處于發展的黃金上升期。預計未來SiPM會朝著高動態范圍器件的方向發展。通過研究更高密度的SPAD并結合先進的封裝技術,使SiPM陣列單元之間的死區最小化,在不影響光子探測效率的同時,增加SiPM的動態范圍。此外,高集成化的數字SiPM(DSiPM)也具有廣闊的發展前景。未來可以集成讀出電子系統至DSiPM,也有望利用DSiPM實現具有出色時間分辨率的單光子計數技術。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 探測
    +關注

    關注

    0

    文章

    214

    瀏覽量

    20581
  • 輻射
    +關注

    關注

    1

    文章

    607

    瀏覽量

    36822
  • 光電倍增管
    +關注

    關注

    3

    文章

    63

    瀏覽量

    13495
  • SiPM
    +關注

    關注

    1

    文章

    18

    瀏覽量

    9184

原文標題:綜述:硅光電倍增管在輻射探測領域中的應用進展

文章出處:【微信號:MEMSensor,微信公眾號:MEMS】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦
    熱點推薦

    輻射光電晶體管表面貼裝光耦合器 skyworksinc

    電子發燒友網為你提供()耐輻射光電晶體管表面貼裝光耦合器相關產品參數、數據手冊,更有耐輻射光電晶體管表面貼裝光耦合器的引腳圖、接線圖、封裝手冊、中文資料、英文資料,耐
    發表于 05-19 18:33
    耐<b class='flag-5'>輻射</b>、<b class='flag-5'>光電晶體管</b>表面貼裝光耦合器 skyworksinc

    輻射光電晶體管非密封表面貼裝光耦合器 skyworksinc

    電子發燒友網為你提供()耐輻射光電晶體管非密封表面貼裝光耦合器相關產品參數、數據手冊,更有耐輻射光電晶體管非密封表面貼裝光耦合器的引腳圖、接線圖、封裝手冊、中文資料、英文資料,耐
    發表于 05-12 18:34
    耐<b class='flag-5'>輻射</b><b class='flag-5'>光電晶體管</b>非密封表面貼裝光耦合器 skyworksinc

    如何挑選光電倍增管

    光電倍增管是微光測量,特別是極限微弱光探測技術的重要探測器。在生命科學、核物理技術、核醫學、生物化學、精密分析、信息科學、環境監測、工業自動控制、光機電一體化等高科技領域中,都有著很重
    的頭像 發表于 04-28 06:24 ?102次閱讀

    安泰電壓放大器雪崩光電二級輻射特性研究中的應用

    實驗名稱:雪崩光電二級電致發光輻射特性的研究 測試目的:雪崩光電二極管是一種高速、高靈敏的二極。相比于通常的
    的頭像 發表于 04-17 11:41 ?189次閱讀
    安泰電壓放大器<b class='flag-5'>在</b>雪崩<b class='flag-5'>光電</b>二級<b class='flag-5'>管</b><b class='flag-5'>輻射</b>特性研究中的應用

    華南理工最新AM:光電倍增驅動的雙模式有機光探測器,偏壓切換下的性能飛躍與應用拓展

    光電倍增型有機光電探測器(PM-OPDs)具有信號放大功能,適用于微弱光檢測,但響應速度慢、暗電流高。光伏型有機光電
    的頭像 發表于 03-19 09:04 ?467次閱讀
    華南理工最新AM:<b class='flag-5'>光電</b><b class='flag-5'>倍增</b>驅動的雙模式有機光<b class='flag-5'>探測</b>器,偏壓切換下的性能飛躍與應用拓展

    光電探測器的工作原理和分類

    光電探測器,作為光電子技術的核心,信息轉換和傳輸中扮演著不可或缺的角色,其圖像傳感和光通信等領域
    的頭像 發表于 03-14 18:16 ?1429次閱讀
    <b class='flag-5'>光電</b><b class='flag-5'>探測</b>器的工作原理和分類

    日本國立材料所成功研發金剛石DUV探測

    超寬帶隙半導體領域,研究者們正致力于開發具有超高增益的深紫外(DUV)光電探測器,以期達到與光電倍增管(PMT)相媲美的性能。這些
    的頭像 發表于 02-11 09:55 ?325次閱讀
    日本國立材料所成功研發金剛石DUV<b class='flag-5'>探測</b>器

    光電倍增管日冕研究中的應用

    日冕是太陽最外層的大氣層,由于其比太陽表面高出數百萬度的極端溫度,及其對地球空間天氣(SpaceWeather)的重大影響,從而成為科學研究的主要焦點之一。日冕由等離子體(一種熾熱的電離氣體,其原子完全或部分失去電子)和塵埃組成,并不斷膨脹進入星際空間,形成太陽風。
    的頭像 發表于 12-23 14:28 ?392次閱讀

    光電倍增管接一個電阻與直接接跨阻放大器之間有區別嗎?

    電阻(該電阻值可從50歐到50千歐可調),這樣我們就能用數據采集卡采集了。 另一種方案是光電倍增管電流信號輸出口連接一個跨阻放大器,這樣直接輸出電壓信號,也可以被數據卡采集。 我們就想咨詢一下,光電倍增管接一個電阻與直接接跨阻
    發表于 08-29 08:13

    自發輻射對APD性能的影響

    雪崩光電二極管(Avalanche Photodiode,簡稱APD)是一種高速、高靈敏度的光電探測器,廣泛應用于光纖通信、激光測距、光學成像等領域。APD的工作原理基于雪崩
    的頭像 發表于 08-20 09:53 ?765次閱讀

    光電倍增管醫療領域的應用

    醫學成像中,光電倍增管常用于熒光成像技術,如熒光顯微鏡和熒光壽命成像(FLIM)。熒光成像技術通過激發生物樣本中的熒光物質,觀察其發出的熒光信號來揭示生物結構和功能信息。光電倍增管能夠高效地收集
    的頭像 發表于 08-09 17:22 ?1425次閱讀

    光電倍增管激光測距中的應用

    光電倍增管作為一種高靈敏度的光電探測器件,激光測距領域同樣具有重要地位。不過,考慮到MPPC作為PMT的一種現代替代品,
    的頭像 發表于 08-09 16:33 ?1009次閱讀

    光電倍增管的作用和特點

    光電倍增管作為一種高度靈敏的光電探測器,現代科學技術中發揮著重要作用。它基于外光電效應、二次電子發射和電子光學理論,能夠將微弱的光信號轉換
    的頭像 發表于 08-09 14:24 ?2433次閱讀

    如何搭建一個電流鏡電路,用于復制SiPM的電流?

    光電倍增管(Silicon photomultiplier,簡稱SiPM)是一種高增益的光電轉換器件。我的電路中,共有16路SiPM并聯,具有很大的結電容(4000pF×16
    發表于 08-02 07:38

    OPA3S2859-EP輸出信號直接4.1V,示波器測不到輸出信號是怎么回事?

    接上光電倍增管,OUT_A引腳的電壓就是4.1V,像是直接就飽和了,不接光電倍增管的時候,OUT_A引腳處電壓有0.97V左右,這種情況怎么解決。下面附上我的電路圖
    發表于 08-01 08:04