太赫茲(THz)是介于紅外線和微波之間的電磁波頻段,其頻率范圍為0.1-10 THz。近年來,由于其具有穿透力強、非毀損性、高分辨率等優點,太赫茲技術在無損檢測、成像、通信、物質識別等領域得到了廣泛應用。
太赫茲頻段的電磁波是由電場和磁場交替變化產生的,其波長在微米至毫米之間,對很多物質具有強烈的穿透能力。因此,太赫茲技術常用于材料的非毀損性檢測。例如,在食品行業中,太赫茲技術可以用于檢測食品的含水量、脂肪含量和糖分含量等。在醫學領域中,太赫茲成像技術可以用于檢測人體表層組織的病理結構,如皮膚癌、乳腺癌等。
太赫茲技術的另一個應用領域是通信。太赫茲波可實現高速無線數據傳輸,其傳輸速率可達幾十Gbps,目前已有研究者在室內環境下進行了太赫茲無線通信的實驗。除此之外,太赫茲技術還可以用于物質識別。由于太赫茲波在與物質相互作用時,會產生特定的吸收譜線,因此可以通過檢測物質的吸收譜線來區分不同物質。
太赫茲技術的實現依賴于太赫茲源和太赫茲檢測器。太赫茲源可以采用鈦-藍寶石激光、光學泵浦摻鋁氧化物激光和微波電擊發器等方式產生。檢測器可以采用如偏振檢測、非線性檢測、光電探測等方法進行。在應用中,太赫茲技術的典型實現形式包括太赫茲成像、太赫茲光譜和太赫茲通信。
總之,太赫茲技術作為一種特殊的電磁波技術,其獨特的特性使其在非毀損性檢測、成像、通信、物質識別等領域具有廣泛的應用前景。
太赫茲頻段(THz)是指介于微波和紅外線之間的電磁波頻率范圍,其頻率范圍在0.1~10 THz(波長為3000~30μm)。該頻段的特點是其能量較高,導電性差,有較好的穿透力,能夠傳播距離遠、傳輸速度快。
在太赫茲頻段中,信息傳輸主要利用電磁波。由于太赫茲波的高頻率和短波長,因此其能夠攜帶更多的信息,傳輸帶寬很高。同時,太赫茲波具有很強的穿透力,可以穿透許多物體,如織物、紙張、玻璃等,因此具有很大的應用前景。
利用太赫茲頻段傳遞信息的方式有許多種。其中,太赫茲通信是一種利用太赫茲波進行無線通信的技術。太赫茲通信主要包括兩種方式:一種是基于光學的太赫茲通信,另外一種是基于電學的太赫茲通信。
基于光學的太赫茲通信,是指將太赫茲波作為信號載體,利用太赫茲波的高頻率和高能量特點,在空氣或玻璃中傳輸信息。這種方式通常采用太赫茲激光,可以采用線性和非線性光學效應實現太赫茲信號的調制,從而傳輸信息。該方式通常使用具有高速度和高分辨率的探測器進行檢測。
基于電學的太赫茲通信,是指利用太赫茲波在導體和非導體材料中傳播的特性,通過控制太赫茲器件的電學參數,實現太赫茲信號的調制和傳輸。這種方式也常用于太赫茲成像、材料檢測等領域。常用的太赫茲器件包括:太赫茲導線、太赫茲天線、太赫茲調制器等。
總的來說,利用太赫茲頻段傳輸信息是一種非常有前景的技術,發展迅速。但是由于太赫茲波粒子性質復雜,探測精度低,因此目前在工程實踐上還存在許多難題需要解決。隨著該領域的不斷發展和技術進步,相信太赫茲通信將會有更廣泛應用。
太赫茲頻段的電磁波是由電場和磁場交替變化產生的,其波長在微米至毫米之間,對很多物質具有強烈的穿透能力。因此,太赫茲技術常用于材料的非毀損性檢測。例如,在食品行業中,太赫茲技術可以用于檢測食品的含水量、脂肪含量和糖分含量等。在醫學領域中,太赫茲成像技術可以用于檢測人體表層組織的病理結構,如皮膚癌、乳腺癌等。
太赫茲技術的另一個應用領域是通信。太赫茲波可實現高速無線數據傳輸,其傳輸速率可達幾十Gbps,目前已有研究者在室內環境下進行了太赫茲無線通信的實驗。除此之外,太赫茲技術還可以用于物質識別。由于太赫茲波在與物質相互作用時,會產生特定的吸收譜線,因此可以通過檢測物質的吸收譜線來區分不同物質。
太赫茲技術的實現依賴于太赫茲源和太赫茲檢測器。太赫茲源可以采用鈦-藍寶石激光、光學泵浦摻鋁氧化物激光和微波電擊發器等方式產生。檢測器可以采用如偏振檢測、非線性檢測、光電探測等方法進行。在應用中,太赫茲技術的典型實現形式包括太赫茲成像、太赫茲光譜和太赫茲通信。
總之,太赫茲技術作為一種特殊的電磁波技術,其獨特的特性使其在非毀損性檢測、成像、通信、物質識別等領域具有廣泛的應用前景。
太赫茲頻段(THz)是指介于微波和紅外線之間的電磁波頻率范圍,其頻率范圍在0.1~10 THz(波長為3000~30μm)。該頻段的特點是其能量較高,導電性差,有較好的穿透力,能夠傳播距離遠、傳輸速度快。
在太赫茲頻段中,信息傳輸主要利用電磁波。由于太赫茲波的高頻率和短波長,因此其能夠攜帶更多的信息,傳輸帶寬很高。同時,太赫茲波具有很強的穿透力,可以穿透許多物體,如織物、紙張、玻璃等,因此具有很大的應用前景。
利用太赫茲頻段傳遞信息的方式有許多種。其中,太赫茲通信是一種利用太赫茲波進行無線通信的技術。太赫茲通信主要包括兩種方式:一種是基于光學的太赫茲通信,另外一種是基于電學的太赫茲通信。
基于光學的太赫茲通信,是指將太赫茲波作為信號載體,利用太赫茲波的高頻率和高能量特點,在空氣或玻璃中傳輸信息。這種方式通常采用太赫茲激光,可以采用線性和非線性光學效應實現太赫茲信號的調制,從而傳輸信息。該方式通常使用具有高速度和高分辨率的探測器進行檢測。
基于電學的太赫茲通信,是指利用太赫茲波在導體和非導體材料中傳播的特性,通過控制太赫茲器件的電學參數,實現太赫茲信號的調制和傳輸。這種方式也常用于太赫茲成像、材料檢測等領域。常用的太赫茲器件包括:太赫茲導線、太赫茲天線、太赫茲調制器等。
總的來說,利用太赫茲頻段傳輸信息是一種非常有前景的技術,發展迅速。但是由于太赫茲波粒子性質復雜,探測精度低,因此目前在工程實踐上還存在許多難題需要解決。隨著該領域的不斷發展和技術進步,相信太赫茲通信將會有更廣泛應用。
聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。
舉報投訴
-
電磁波
+關注
關注
21文章
1478瀏覽量
54428 -
太赫茲
+關注
關注
11文章
350瀏覽量
29767 -
太赫茲技術
+關注
關注
0文章
41瀏覽量
8451
發布評論請先 登錄
相關推薦
熱點推薦
上海光機所在強場太赫茲對砷化鎵偶次諧波調控研究方面取得新進展
圖1. 強場太赫茲波的產生及物質調控信號測量裝置 (a)實驗光路;(b)泵浦光光譜;(c)太赫茲頻譜。 近期,中國科學院上海光學精密機械研究所強場激光物理國家重點實驗室在強場THz脈沖

Keysight是德示波器從低頻到太赫茲的全頻段測量解決方案
在電子測量領域,示波器作為信號分析的核心工具,其性能邊界始終與科技發展同步演進。從音頻信號的毫赫茲頻段到太赫茲通信的亞毫米波頻段,不同應用場

西安光機所在太赫茲超表面逆向設計領域取得新進展
高精度超表面逆向設計方法及透射/反射雙功能的寬頻段聚焦渦旋光產生器示意圖 近日,中國科學院西安光機所超快光科學與技術全國重點實驗室在太赫茲頻段超表面逆向設計領域取得新進展,相關研究成果

聊城大學/深圳大學/南京大學:三強聯手——太赫茲傳感領域再添利器!
研究背景 在第五代(5G)技術的基礎上,第六代(6G)網絡的發展正推動無線通信技術邁向更高的數據吞吐量和更低的延遲。6G網絡預計將在太赫茲(THz)頻段運行,這為實現超高速通信和精確傳感提供了巨大

太赫茲細胞能量儀主控芯片方案單片機開發控制板布局規劃
太赫茲細胞理療儀的工作原理及使用方法 太赫茲(THZ)是指頻率在0.1一10THZ之間的電磁波,其波段是介于紅外線和微波之間 ,太
發表于 03-25 15:37
新知|為什么6G選擇太赫茲頻段?揭秘下一代通信的“超級縫合怪”戰略
一、技術極限倒逼:香農定理下的帶寬革命根據香農定理,信道容量與帶寬和信噪比直接相關。5G的毫米波頻段(如28GHz)僅能提供約1GHz的帶寬,而太赫茲頻段(如1000GHz附近)的潛在

上海光機所在集成化高重頻太赫茲光源研究方面取得進展
圖1. (a)太赫茲產生和探測實驗裝置圖,(b)展寬前(青色)和展寬后(品紅色)的激光光譜,(c)壓縮后激光脈沖寬度(藍色)和相位(橙色)。 近期,中國科學院上海光學精密機械研究所強場激光

用于太赫茲到光頻率快速頻譜分析的1GHz單腔雙光梳激光器
自由空間太赫茲時域光譜學分析和厚度測量的。對于b)我們使用高效的摻鐵InGaAs光電天線來產生和檢測太赫茲光。這里我們首次使用高效的基于釔的千兆赫重復頻率激光器來操作這些設備。一個光學

羅德與施瓦茨展示創新6G超穩定可調太赫茲系統
羅德與施瓦茨(以下簡稱“R&S”)在巴黎舉辦的歐洲微波周(EuMW 2024)上展示了基于光子太赫茲通信鏈路的6G無線數據傳輸系統的概念驗證,助力新一代無線技術的前沿探索。 在 6G-ADLANTIK 項目中開發的超穩定可調太
中國科研團隊首次實現公里級太赫茲無線通信傳輸
首次將高靈敏度超導接收機技術應用于遠距離太赫茲無線通信系統,同時也是0.5THz及以上頻段實現的最遠傳輸距離記錄。
太赫茲拉曼光譜簡
圖 1:顯示不同光譜技術對應的電磁波譜。 拉曼光譜通常在可見光 (532 nm) 或近紅外光 (785 nm) 中使用,而紅外吸收光譜用于 5 μm至50 μm 的范圍,太赫茲光譜用于50 μm 至


評論