女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

淺析三種主流深度神經網絡

Dbwd_Imgtec ? 來源:未知 ? 2023-05-15 14:20 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

來源:青榴實驗室


1、引子

深度神經網絡(DNNs)最近在圖像分類或語音識別等復雜機器學習任務中表現出的優異性能令人印象深刻。

在本文中,我們將了解深度神經網絡的基礎知識和三個最流行神經網絡:多層神經網絡(MLP),卷積神經網絡(CNN)和遞歸神經網絡(RNN)。


2、什么是深度神經網絡

機器學習是一門多領域交叉學科,專門研究計算機怎樣模擬或實現人類的學習行為,以獲取新的知識或技能,重新組織已有的知識結構使之不斷改善自身的性能。它是人工智能的核心,是使計算機具有智能的根本途徑。如果論及哪一個機器學習的領域最為熱門,非人工智能莫屬,這就是深度學習。深度學習框架又名深度神經網絡,一個復雜的模式識別系統,在過去的幾十年里,機器學習給我們的日常生活帶來了巨大的影響,包括高效的網絡搜索、自動駕駛系統、計算機視覺光學字符識別。

深度神經網絡模型已經成為機器學習和人工智能的有力工具。深度神經網絡(DNN)的輸入層和輸出層之間有多層的人工神經網絡(ANN)。

深層神經網絡的迅速發展應用致使語音識別錯誤率上較傳統語音識別方法錯誤率減少30%(20年來最大降幅),同時也大幅削減了圖像識別的錯誤率,自2011年以來深度學習圖像識別的錯誤率從26%到3.5%,而人類是5%。


3、深度神經網絡的基本原理

深度神經網絡模型最初基于神經生物學的啟發。生物神經元通過與樹突的突觸接觸接收多個信號,并通過軸突發送單一的動作電位流。通過對輸入模式進行分類,可以降低多個輸入的復雜性。受這種輸入輸出方式的啟發,人工神經網絡模型由組合多個輸入和單一的輸出單元組成。神經網絡以模擬人類大腦的功能為目標,并基于一個簡單的人工神經元:輸入信號的加權和的非線性函數(如max(0, value))。這些偽神經元被聚合成層,一層的輸出成為序列中下一層的輸入。

4、深度神經網絡的“深”

深度神經網絡在神經網絡中采用了深度結構。“深”是指在層次數和單層單元數的深兼具較高復雜性的功能。云計算中的大型數據集可以通過使用額外的和更大的層來捕獲更高級數據模式來構建更精確的模型。神經網絡的兩個階段被稱為訓練(或學習)和推斷(或預測),它們指的是發展和生產。開發人員選擇神經網絡的層數和類型,訓練確定權值。

5、目前流行的深度神經網絡有三種

5.1 多層感知器(MLP)

多層感知器(MLP)是一類前饋人工神經網絡(ANN)。MLPs模型是最基本的深度神經網絡,其將輸入的多個數據集映射到單一的輸出的數據集上,由一系列全連接層組成。每一層都是一組非線性函數,它們是前一層所有輸出(完全連通)的加權和。功能函數:wKgZomTnn3yACyMvAAAMi5_-pmo603.png

wKgaomTpvqGAE8MbAAHnnrXL7LM054.png

5.2 卷積神經網絡(CNN)

卷積神經網絡(CNN,或ConvNet)是另一類深度神經網絡。CNN最常用于計算機視覺。給定一系列來自現實世界的圖像或視頻AI系統利用CNN學習自動提取這些輸入的特征來完成特定的任務,如圖像分類、人臉認證、圖像語義分割等。

與MLP中的完全連接層不同,在CNN模型中,一個或多個卷積層通過執行卷積操作從輸入中提取簡單特征。每一層都是一組非線性函數,這些函數的加權和位于前一層輸出的空間附近子集的不同坐標上,允許權重被重用。

wKgZomTpvo6AG7xWAAEKdrNexL8911.png

應用各種卷積濾波器,CNN模型可以高水平準確地捕獲輸入數據,使其成為最受歡迎的計算機視覺應用技術,如圖像分類(例如,AlexNet, VGG網絡,ResNet, MobileNet)和目標檢測(例如,Fast R-CNN, Mask R-CNN, YOLO, SSD)。AlexNet。在圖像分類方面,作為2012年第一個贏得ImageNet挑戰賽的CNN, AlexNet由5個卷積層和3個全連接層組成。AlexNet需要6100萬個權重和7.24億個mac(乘法加法計算)來對大小為227×227的圖像進行分類。

VGG-16。為了達到更高的精度,vg -16被訓練為一個更深層次的16層結構,由13個卷積層和3個全連通層組成,需要1.38億權值和15.5G mac對大小為224×224的圖像進行分類。

GoogleNet。為了提高準確性,同時減少DNN推理的計算,GoogleNet引入了一個由不同大小的過濾器組成的初始模塊。google et比vg -16具有更好的精度性能,而處理相同大小的圖像只需要700萬權重和1.43G mac。

ResNet。最新的研究成果ResNet使用了“快捷”結構,達到了人類平均水平的準確率,前5名的錯誤率低于5%。“捷徑”模塊用于解決訓練過程中的梯度消失問題,使訓練具有更深結構的DNN模型成為可能。

近年來CNN的準確率和性能逐漸提高,應用于人們人工智能視覺任務的,超過了人類視覺的平均水平錯誤率低于5%。wKgZomTnn3yAX8_6AAOa_bw0Zwk001.png5.3遞歸神經網絡(RNN)遞歸神經網絡(RNN)是另一類使用順序數據輸入的人工神經網絡。RNN是用來解決序列輸入數據的時間序列問題的。RNN的輸入由當前輸入和之前的樣本組成。因此,節點之間的連接沿時間序列形成有向圖。RNN中的每個神經元都有一個內部存儲器,它保存著來自前一個樣本的計算信息。wKgZomTnn3yAdN0DAAFa0t3z7-k216.pngRNN模型在處理輸入長度不固定的數據方面具有優勢,因此在自然語言處理中得到了廣泛的應用。人工智能的任務是建立一個能夠理解人類說的自然語言的系統,例如自然語言建模、單詞嵌入和機器翻譯。

在RNN中,每一層都是輸出和前一層狀態的加權和的非線性函數集合。RNN的基本單元稱為“Cell”,每個Cell層由一系列的Cell組成,層層傳遞處理使RNN模型能夠進行順序處理。


6、深度神經網絡應用

深度學習現在已經應用到生活各領域:

1.深度學習應用在音視頻的識別上,幾乎所有的商用語音識別都是深度學習來完成的,如自然語言理解方面,主要是使用一種叫做LSTM的深度學習方法。

2.深度學習應用于圖像識別,目前識別準確率已經超越人類,深度學習成了圖像識別的標配。其中圖像識別中,應用最廣的是人臉識別。

總之深度神經網絡已經深入便捷了人們生活,各類自動駕駛車輛,各種類型的人工智能機器人,智能回答,智能翻譯,天氣預報,股票預測,人臉比對,聲紋比對,等其他許多有趣的應用,比如智能插畫,自動作詩,自動寫作文,等都可以通過深度學習來完成深度神經網絡。

END

歡迎加入Imagination GPU與人工智能交流2群

wKgZomTnn32ATq_bAABN8aBfIqc717.jpg

入群請加小編微信:eetrend89

(添加請備注公司名和職稱)

推薦閱讀 對話Imagination中國區董事長:以GPU為支點加強軟硬件協同,助力數字化轉型

Imagination攜手飛槳等多家伙伴聯合發布 AI Studio硬件生態專區

wKgZomTnn32ANuTYAAGo5T4MzkM492.jpg

Imagination Technologies是一家總部位于英國的公司,致力于研發芯片和軟件知識產權(IP),基于Imagination IP的產品已在全球數十億人的電話、汽車、家庭和工作 場所中使用。獲取更多物聯網、智能穿戴、通信汽車電子、圖形圖像開發等前沿技術信息,歡迎關注 Imagination Tech!


原文標題:淺析三種主流深度神經網絡

文章出處:【微信公眾號:Imagination Tech】歡迎添加關注!文章轉載請注明出處。


聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • imagination
    +關注

    關注

    1

    文章

    599

    瀏覽量

    62216
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    BP神經網絡與卷積神經網絡的比較

    BP神經網絡與卷積神經網絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結構特點 BP神經網絡 : BP神經網絡是一多層的前饋
    的頭像 發表于 02-12 15:53 ?661次閱讀

    BP神經網絡的優缺點分析

    BP神經網絡(Back Propagation Neural Network)作為一常用的機器學習模型,具有顯著的優點,同時也存在一些不容忽視的缺點。以下是對BP神經網絡優缺點的分析: 優點
    的頭像 發表于 02-12 15:36 ?914次閱讀

    什么是BP神經網絡的反向傳播算法

    BP神經網絡的反向傳播算法(Backpropagation Algorithm)是一用于訓練神經網絡的有效方法。以下是關于BP神經網絡的反向傳播算法的介紹: 一、基本概念 反向傳播算
    的頭像 發表于 02-12 15:18 ?765次閱讀

    BP神經網絡深度學習的關系

    ),是一多層前饋神經網絡,它通過反向傳播算法進行訓練。BP神經網絡由輸入層、一個或多個隱藏層和輸出層組成,通過逐層遞減的方式調整網絡權重,目的是最小化
    的頭像 發表于 02-12 15:15 ?851次閱讀

    深度學習入門:簡單神經網絡的構建與實現

    深度學習中,神經網絡是核心模型。今天我們用 Python 和 NumPy 構建一個簡單的神經網絡神經網絡由多個神經元組成,
    的頭像 發表于 01-23 13:52 ?528次閱讀

    人工神經網絡的原理和多種神經網絡架構方法

    在上一篇文章中,我們介紹了傳統機器學習的基礎知識和多種算法。在本文中,我們會介紹人工神經網絡的原理和多種神經網絡架構方法,供各位老師選擇。 01 人工神經網絡 ? 人工神經網絡模型之所
    的頭像 發表于 01-09 10:24 ?1183次閱讀
    人工<b class='flag-5'>神經網絡</b>的原理和多種<b class='flag-5'>神經網絡</b>架構方法

    卷積神經網絡與傳統神經網絡的比較

    深度學習領域,神經網絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經網絡(CNNs)和傳統神經網絡是兩
    的頭像 發表于 11-15 14:53 ?1865次閱讀

    深度學習中的卷積神經網絡模型

    深度學習近年來在多個領域取得了顯著的進展,尤其是在圖像識別、語音識別和自然語言處理等方面。卷積神經網絡作為深度學習的一個分支,因其在圖像處理任務中的卓越性能而受到廣泛關注。 卷積神經網絡
    的頭像 發表于 11-15 14:52 ?844次閱讀

    RNN模型與傳統神經網絡的區別

    神經網絡是機器學習領域中的一強大工具,它們能夠模擬人腦處理信息的方式。隨著技術的發展,神經網絡的類型也在不斷增加,其中循環神經網絡(RNN)和傳統
    的頭像 發表于 11-15 09:42 ?1125次閱讀

    LSTM神經網絡的結構與工作機制

    LSTM(Long Short-Term Memory,長短期記憶)神經網絡是一特殊的循環神經網絡(RNN),設計用于解決長期依賴問題,特別是在處理時間序列數據時表現出色。以下是LSTM神經
    的頭像 發表于 11-13 10:05 ?1628次閱讀

    LSTM神經網絡與傳統RNN的區別

    深度學習領域,循環神經網絡(RNN)因其能夠處理序列數據而受到廣泛關注。然而,傳統RNN在處理長序列時存在梯度消失或梯度爆炸的問題。為了解決這一問題,LSTM(長短期記憶)神經網絡應運而生。 循環
    的頭像 發表于 11-13 09:58 ?1208次閱讀

    Moku人工神經網絡101

    不熟悉神經網絡的基礎知識,或者想了解神經網絡如何優化加速實驗研究,請繼續閱讀,探索基于深度學習的現代智能化實驗的廣闊應用前景。什么是神經網絡?“人工
    的頭像 發表于 11-01 08:06 ?661次閱讀
    Moku人工<b class='flag-5'>神經網絡</b>101

    matlab 神經網絡 數學建模數值分析

    matlab神經網絡 數學建模數值分析 精通的可以討論下
    發表于 09-18 15:14

    FPGA在深度神經網絡中的應用

    隨著人工智能技術的飛速發展,深度神經網絡(Deep Neural Network, DNN)作為其核心算法之一,在圖像識別、語音識別、自然語言處理等領域取得了顯著成果。然而,傳統的深度神經網絡
    的頭像 發表于 07-24 10:42 ?1200次閱讀

    如何構建多層神經網絡

    構建多層神經網絡(MLP, Multi-Layer Perceptron)模型是一個在機器學習和深度學習領域廣泛使用的技術,尤其在處理分類和回歸問題時。在本文中,我們將深入探討如何從頭開始構建一個多層神經網絡模型,包括模型設計、
    的頭像 發表于 07-19 17:19 ?1556次閱讀