女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

高壓鋰離子電池溶劑分子設計新范式

清新電源 ? 來源:深水科技咨詢 ? 2023-04-26 09:04 ? 次閱讀

背景介紹

提高充電截止電壓是提高鋰離子電池能量密度的有效途徑之一。然而,傳統碳酸鹽電解質氧化穩定性低,在正極上鈍化能力差,特別是在>4.3V(vs.Li+/Li)下,因此會造成嚴重的副反應,導致正極的過渡金屬溶解和結構重構,從而降低電池性能。此外,碳酸鹽電解質中形成的SEI層離子電導率較低,不利于LIBs的循環穩定性。為了提高正極-電解質的相容性,人們進行了大量的研究。在正極表面涂覆或摻雜可以減少電解質和正極之間副反應的發生率。然而,它們的性能增強是有限的,特別是在高截止電壓(>4.5V)下,因為這些CEI通常具有高界面電阻并且缺乏自愈能力。電解質設計是一種很有前途的解決方案,有助于解決上述挑戰。

成果簡介

近日,浙江大學范修林教授,通過多功能溶劑分子設計設計了一種不易燃的氟磺酸鹽電解質,它可以在高壓正極上形成富無機正極電解質界面(CEI),在石墨負極上形成有機/無機混合固體電解質界面(SEI)。電解液由1.9M LiFSI溶解在1:2v/v的2,2,2-三氟乙基三氟甲烷磺酸鹽和2,2,2-三氟乙基甲烷磺酸鹽混合物中組成,實現了4.55V的石墨||LiCoO2和4.6V的石墨||NCM811電池,在5329次循環中容量保持率分別為89%和85%,從而使能量密度比充電至4.3V時分別提高33%和16%。

圖文導讀

a5b5400c-e3c6-11ed-ab56-dac502259ad0.png

【圖1】基于穩定的LiOTf鹽和PS成膜添加劑的多功能磺酸基溶劑的設計步驟。

a5dd9b56-e3c6-11ed-ab56-dac502259ad0.png

【圖2】a石墨||LCO電池在截止電壓為4.55V、充電速率為1C、放電速率為2C時,在C/10下三次活化后的循環穩定性。b使用1.9M LiFSI/TTMS-TM電解質的石墨||LCO電池充放電曲線。cC/10條件下,石墨||NCM811電池在4.6V截止電壓、1C充電速率和2C放電速率下的循環穩定性。d使用1.9MLiFSI/TTMS-TM電解液的石墨||NCM811電池充放電曲線。e石墨||NCM811電池在4C充電和1~20C放電下的倍率性能。f在1C充電和2C放電速率下,電池經過100次循環后的GITT放電電壓曲線。所有電池以C/3的速率循環,脈沖時間12min,休息時間5h。g(f)中以橢圓突出顯示的電壓弛豫過程的放大圖。

a6235e2a-e3c6-11ed-ab56-dac502259ad0.png

【圖3】a在指定的電解液中對NCM811正極進行3個循環后的恒壓(5V vs.Li+/Li)浮動測試時的漏電流密度。b通過電感耦合等離子體質譜(ICP-MS)在指定電解質中循環100次后測定過渡金屬(Ni,Co和Mn)的溶解。c,d在1MLiPF6/EC-DMC+2%VC電解質中循環100次后,從石墨||NCM811電池中提取的NCM811正極的SEM橫截面圖(c)和HRTEM圖像(d)。在1.9MLiFSI/TTMS-TM電解液中循環100次后,從石墨||NCM811電池中提取的NCM811正極的SEM橫截面圖(e)和HRTEM橫截面圖(f)。g在指定的電解質中循環100次后,從石墨||NCM811電池中獲得的NCM811正極表面的XPS曲線。

a64a1056-e3c6-11ed-ab56-dac502259ad0.png

【圖4】用1.9M的LiFSI/TTMS-TM電解液循環,濺射時間分別為0、120、300和600s時,石墨負極的F1s、S2p、O1s和C1s的XPS深度分布圖。b從指定電解質循環的全電池中提取的石墨負極表面上檢測到的元素的相對含量。c,d 1.9 M LiFSI/TTMS-TM電解液(c)和1M LiPF6/EC-DMC+2%VC電解液(d)中形成的SEI不同深度原子濃度。e,f在1.9M LiFSI/TTMS-TM電解液(e)和1M LiPF6/EC-DMC+2%VC電解液(f)中循環100次后石墨負極的低溫透射電鏡圖像。g,h在1.9M LiFSI/TTMS-TM電解液(g)和1M LiPF6/EC-DMC+2%VC電解液(h)中回收的全電池中石墨負極的相應EELS映射。

a6659ac4-e3c6-11ed-ab56-dac502259ad0.png

【圖5】a采用從石墨||NCM811電池中回收的石墨負極的對稱電池在不同電解質中循環1000次后的EIS。b擬合得到的電阻。c利用SMD溶劑化模型計算了LiFSI、TTMS和TM的還原電位(相對于Li+/Li)和還原配合物。圖為1.9M LiFSI/TTMS-TM電解液在鋰化石墨負極上的模擬還原產物。d擬合1.9MLiFSI/TTMS-TM電解液中Li+在室溫下的擴散系數和主要還原產物Li2SO3、LiF和Li2O的擴散能壘。e用BVEL方法模擬了Li+在體相Li2SO3中可能的擴散路徑。

a688b220-e3c6-11ed-ab56-dac502259ad0.png

【圖6】a1-Ah石墨||NCM811軟包電池的循環性能。b1-Ah石墨||NCM811軟包電池的能效。c充滿電的石墨||NCM811軟包電池的ARC測試。d針刺試驗前后石墨||LCO軟包電池的光學圖像。e不同充電截止電壓下石墨||NCM811軟包電池的平均電壓和正極比容量。在3~4.6V電壓范圍內,在0.5C充電和1C放電條件下進行軟包電池測試。

a6a50e52-e3c6-11ed-ab56-dac502259ad0.png

【圖7】a在石墨負極上形成不同種類的SEI。b不同溶劑在充滿電NCM811表面的氧化穩定性。c高壓LIB電解液的設計原理。

總結和展望

本工作通過將添加劑(PS)和鋰鹽(LiOTf)的優點融合到溶劑中,報道了一種用于高壓長循環鋰離子電池的氟化磺酸電解質。提出的1.9MLiFSI/TTMS-TM電解液通過抑制副反應(電解質氧化、過渡金屬溶解、氣體析出等)來穩定NCM811和LCO正極,并通過在石墨負極上形成含S物質(Li2SOx)實現快速的Li+嵌入/脫出動力學。此外,不易燃的電解液擴展了高壓電池的極限,實現了4.55V的石墨||LCO和4.6V的石墨||NCM811電池。它們能夠在數千次循環中保持穩定,同時具有良好的安全性。此外,還提出了高壓電解質的設計原則:(1)應具有高氧化穩定性(良好的鈍化能力,即應形成保護性的富無機CEI);(2)鋰鹽與溶劑之間的反應活性應相當(RI>0eV但接近0eV),在石墨負極上生成具有高離子電導率的有機/無機雜化SEI。該發現提供了一種簡單而有效的方法來配制電解質,以提高商業LIB的能量密度。







審核編輯:劉清

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 鋰離子電池
    +關注

    關注

    85

    文章

    3319

    瀏覽量

    78703
  • 電解質
    +關注

    關注

    6

    文章

    821

    瀏覽量

    20594
  • 電解液
    +關注

    關注

    10

    文章

    860

    瀏覽量

    23425
  • 電池充放電
    +關注

    關注

    1

    文章

    166

    瀏覽量

    9222

原文標題:浙大范修林最新Nature子刊:高壓鋰離子電池溶劑分子設計新范式!

文章出處:【微信號:清新電源,微信公眾號:清新電源】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦
    熱點推薦

    車用鋰離子電池機理建模與并聯模組不一致性研究

    車用鋰離子電池機理建模與并聯模組不一致性研究
    發表于 05-16 21:02

    FIB-SEM技術在鋰離子電池的應用

    鋰離子電池材料的構成鋰離子電池作為現代能源存儲領域的重要組成部分,其性能的提升依賴于對電池材料的深入研究。鋰離子電池通常由正極、負極、電解質、隔膜和封裝材料等部分構成。正極材料和負極材
    的頭像 發表于 02-08 12:15 ?501次閱讀
    FIB-SEM技術在<b class='flag-5'>鋰離子電池</b>的應用

    鋰離子電池和三元鋰電池,誰更安全?

    鋰離子電池和三元鋰電池在安全性上各有優劣。鋰離子電池憑借其成熟的技術和穩定的性能,在安全性方面有著堅實的保障;三元鋰電池雖然在能量密度上表現突出,但在安全性上仍需不斷改進和完善。隨著科
    的頭像 發表于 01-23 15:19 ?666次閱讀
    <b class='flag-5'>鋰離子電池</b>和三元鋰<b class='flag-5'>電池</b>,誰更安全?

    朗凱威鋰電池定制 電瓶車鋰離子電池工作原理 鋰電池工作放電充電過程

    鋰離子電池作為現代科技的重要組成部分,其工作原理雖然復雜,但卻為我們的生活帶來了極大的便利。了解鋰離子電池的工作原理,不僅可以讓我們更好地使用電子設備,還能為未來的科技創新提供靈感。希望本文能讓你對鋰離子電池有更深入的認識!
    的頭像 發表于 12-21 15:15 ?557次閱讀
    朗凱威鋰<b class='flag-5'>電池</b>定制 電瓶車<b class='flag-5'>鋰離子電池</b>工作原理 鋰<b class='flag-5'>電池</b>工作放電充電過程

    朗凱威鋰電池組定制新能源汽車 “動力源”—— 鋰離子電池詳解

    鋰離子電池作為新能源汽車的核心部件,具有高能量密度、長壽命、環保性能好等優點。隨著技術的不斷進步,鋰離子電池的性能將不斷提高,成本將逐步降低,安全性將得到更好的保障。同時,我們也應該正確使用和保養新能源汽車鋰離子電池,以延長其使
    的頭像 發表于 12-16 15:58 ?467次閱讀
    朗凱威鋰<b class='flag-5'>電池</b>組定制新能源汽車 “動力源”—— <b class='flag-5'>鋰離子電池</b>詳解

    智能化進程中的鋰離子電池

    。1992年,鋰離子電池實現商品化。 ? 鋰離子電池 鋰離子電池是一種充電電池,它主要依靠鋰離子在正極和負極之間移動來工作。在充放電過程中,
    的頭像 發表于 12-06 10:45 ?764次閱讀

    石墨負極在鋰離子電池中的發展與儲鋰機制

    近日,清華大學張強教授團隊總結并展望了石墨負極界面的調控方法及其對鋰離子電池電化學性能的影響機制,重點介紹了石墨負極在鋰離子電池中的發展與儲鋰機制、炭負極的表界面表征方法與界面調控方法,結合目前國內
    的頭像 發表于 10-28 11:28 ?2627次閱讀
    石墨負極在<b class='flag-5'>鋰離子電池</b>中的發展與儲鋰機制

    在便攜式應用中使用鎳氫電池鋰離子電池

    電子發燒友網站提供《在便攜式應用中使用鎳氫電池鋰離子電池.pdf》資料免費下載
    發表于 10-24 09:35 ?0次下載
    在便攜式應用中使用鎳氫<b class='flag-5'>電池</b>和<b class='flag-5'>鋰離子電池</b>

    鋰離子電池的種類有哪些

    鋰離子電池的工作原理其實相當精妙。它主要由四大主材構成:正極材料、負極材料、電解液和隔膜。其中,正極和負極材料統稱為電極材料,是電池性能與價格的關鍵因素。
    的頭像 發表于 10-16 14:22 ?976次閱讀
    <b class='flag-5'>鋰離子電池</b>的種類有哪些

    鋰離子電池自動檢測化成分容柜:電池生產的新動力

    在快速發展的新能源行業中,鋰離子電池作為核心部件,其性能與品質直接關系到整個產品的競爭力。而鋰離子電池自動檢測化成分容柜,作為電池生產過程中的關鍵設備,以其自動化、智能化的特點,正逐步成為提升
    的頭像 發表于 09-26 11:27 ?896次閱讀

    新能源行業鋰離子電池測試

    01背景新能源行業是近年來快速發展的一個新興產業,其主要特點是利用可再生能源和清潔能源來替代傳統化石能源,從而實現能源的可持續發展。鋰離子電池作為新能源行業的核心部件之一,其性能和穩定性對整個系統
    的頭像 發表于 07-21 08:33 ?946次閱讀
    新能源行業<b class='flag-5'>鋰離子電池</b>測試

    鋰離子電池冷卻方法及其應用分析

    鋰離子電池是通過化學反應的方式提供能量的,所以這個過程會發生一定的熱量,而熱量如果持續增加而得不到有效的散熱,就會積累,反過來電化學物質在高溫下活性更強,這樣不斷疊加之下,鋰離子電池發生自燃或爆炸
    的頭像 發表于 07-16 17:27 ?628次閱讀
    <b class='flag-5'>鋰離子電池</b>冷卻方法及其應用分析

    HT4054H帶OVP的高壓線性鋰離子電池充電管理 IC

    HT4054H是一款完整的帶過壓保護的高壓單節鋰離子電池充電管理芯片,采用恒定電流/恒定電壓線性充電器,業界都稱他為鋰電池的御用保鏢,他是能夠對鋰電池進行充電且外圍電路非常簡單。
    的頭像 發表于 06-28 11:08 ?733次閱讀
    HT4054H帶OVP的<b class='flag-5'>高壓</b>線性<b class='flag-5'>鋰離子電池</b>充電管理 IC

    工信部升級鋰離子電池行業規范,引領產業高質量發展

    隨著全球對清潔能源和可持續發展的日益重視,鋰離子電池作為電動汽車、智能手機等電子產品的重要動力源,其行業規范與標準的重要性愈發凸顯。近日,工業和信息化部(簡稱“工信部”)發布了最新修訂的《鋰離子電池
    的頭像 發表于 06-20 10:15 ?1895次閱讀

    通信電源系統的守護者:鋰離子電池

    在通信電源系統中,為保障通信電源系統不間斷工作,鋰離子電池作為備用電源,成為其重要的守護者。一套配置了鋰離子電池的通信電源系統,當市電停電時,鋰離子電池立即取代市電為負載設備供電,以確保負載能不
    的頭像 發表于 06-15 08:05 ?164次閱讀
    通信電源系統的守護者:<b class='flag-5'>鋰離子電池</b>