當光線照射到分子并且和分子中的電子云及分子鍵結產生相互作用,就會發生拉曼效應。對于自發拉曼效應,光子將分子從基態激發到一個虛擬的能量狀態。當激發態的分子放出一個光子后并返回到一個不同于基態的旋轉或振動狀態。在基態與新狀態間的能量差會使得釋放光子的頻率與激發光線的波長不同。
如果最終振動狀態的分子比初始狀態時能量高,所激發出來的光子頻率則較低,以確保系統的總能量守衡。這一個頻率的改變被名為Stokes shift。如果最終振動狀態的分子比初始狀態時能量低,所激發出來的光子頻率則較高,這一個頻率的改變被名為Anti-Stokes shift。拉曼散射是由于能量透過光子和分子之間的相互作用而傳遞,就是一個非彈性散射的例子。
關于振動的配位,分子極化電位的改變或稱電子云的改變量,是分子拉曼效應必定的結果。極化率的變化量將決定拉曼散射強度。該模式頻率的改變是由樣品的旋轉和振動狀態決定。
1.Rayleigh散射:彈性碰撞;無能量交換,僅改變方向;
2.Raman散射:非彈性碰撞;方向改變且有能量交換;
拉曼光譜的特征
1. 對不同物質Raman 位移不同;
2.對同一物質Δν與入射光頻率無關;是表征分子振-轉能級的特征物理量;是定性與結構分析的依據;
3.拉曼線對稱地發布在瑞利線兩側,長波一側為斯托克斯線,短波一側為反斯托克斯線;
4.斯托克斯線強度比反斯托克斯線強;
拉曼譜圖的構成和特征
一張拉曼譜圖通常由一定數量的拉曼峰構成,每個拉曼峰代表了相應的拉曼位移和強度。每個譜峰對應于一種特定的分子鍵振動,其中既包括單一的化學鍵,例如C-C,C=C,N-O,C-H等,也包括由數個化學鍵組成的基團的振動,例如苯環的呼吸振動、多聚物長鏈的振動以及晶格振動等。
拉曼光譜可以提供樣品化學結構、相和形態、結晶度及分子相互作用的詳細信息。
主要的拉曼光譜儀
激光Raman光譜儀(laser Raman spectroscopy)
Ar激光器:
波長: 514.5nm,488.0nm;
單色器:
光柵,多單色器;
檢測器:
光電倍增管,光子計數器;
審核編輯:劉清
-
激光器
+關注
關注
17文章
2678瀏覽量
61868 -
光譜儀
+關注
關注
2文章
1055瀏覽量
31483 -
拉曼光譜
+關注
關注
0文章
90瀏覽量
2929
發布評論請先 登錄
什么是微型光譜儀?基礎原理與應用領域解析

近紅外光譜儀校準方法 近紅外光譜儀與紫外光譜儀區別
什么是光纖光譜儀?光纖光譜儀的應用

精準捕捉拉曼信號——時間門控拉曼光譜系統實驗結果深度解析

地物光譜儀:原理、應用與技術特點
地物光譜儀是測什么的

普林斯頓PI推出拉曼光譜儀,在近紅外領域具有突破性的高靈敏度性能
TPIR 785 高通量高靈敏度拉曼光譜儀

評論