女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

一文為您揭秘碳化硅芯片的設(shè)計(jì)和制造

安森美 ? 來源:未知 ? 2023-03-30 22:15 ? 次閱讀

本文作者:安森美汽車主驅(qū)功率模塊

產(chǎn)品線經(jīng)理Bryan Lu

眾所周知,對(duì)于碳化硅MOSFET(SiC MOSFET)來說,高質(zhì)量的襯底可以從外部購買得到,高質(zhì)量的外延片也可以從外部購買到,可是這只是具備了獲得一個(gè)碳化硅器件的良好基礎(chǔ),高性能的碳化硅器件對(duì)于器件的設(shè)計(jì)和制造工藝有著極高的要求。這篇文章為您介紹SiC MOSFET器件設(shè)計(jì)和制造流程并展示安森美(onsemi)在這方面的創(chuàng)新技術(shù)與成果。

Die Layout

首先,下圖是一張制造測(cè)試完成了的SiC MOSFET的晶圓(wafer)。

4fc42946-cf04-11ed-bfe3-dac502259ad0.png

芯片表面一般是如圖二所示,由源極焊盤(Source pad),柵極焊盤(Gate Pad)開爾文源極焊盤(Kelvin Source Pad)構(gòu)成。有一些只有Gate pad,如上圖的芯片就沒有Kelvin source pad。 4fe889ee-cf04-11ed-bfe3-dac502259ad0.png

圖二.芯片表面

在這里我們仔細(xì)觀察芯片的周圍有一個(gè)很窄的環(huán)形,它的作用主要是提升芯片的耐壓,我們叫耐壓環(huán)(Edge termination Ring),通常是JTE結(jié)構(gòu),其實(shí)一個(gè)芯片主要就是由三部分構(gòu)成:Terminal Ring,Gate Pad,Kelvin Source Pad和開關(guān)單元(Active Cell)。芯片外圍一圈是耐壓環(huán),Gate pad把柵極信號(hào)傳遞到每一個(gè)Cell上面,然后里面是上百萬個(gè)Active Cell。

通常大家關(guān)注比較多的是Active Cell,因?yàn)樾酒拈_關(guān)和導(dǎo)通性能主要是和Active Cell有比較大的關(guān)系。在這里我們把芯片的layout還有各個(gè)部分的作用特點(diǎn)總結(jié)一下,這樣方便大家對(duì)芯片有一個(gè)更好的認(rèn)識(shí)。

耐壓環(huán)

(Edge termination Ring)

環(huán)繞著芯片的開關(guān)單元,目前大多數(shù)采用JTE結(jié)構(gòu);

有效控制漏電流,提高SiC器件的可靠性和穩(wěn)定性;

減小電場(chǎng)集中效應(yīng),提高SiC器件的擊穿電壓,SiC MOSFET的擊穿電壓和具體的每一個(gè)開關(guān)單元有關(guān),同時(shí)和耐壓環(huán)也有很大的關(guān)系;

防止離子遷移,JTE技術(shù)可以用于抑制移動(dòng)離子的漂移,從而提高SiC MOSFET的可靠性和穩(wěn)定性。

其實(shí)耐壓環(huán)的最主要的作用就是提升芯片的耐壓,SiC MOSFET的耐壓和Active Cell有關(guān)系,但是芯片邊緣的場(chǎng)強(qiáng)很大,及其容易導(dǎo)致邊緣擊穿,所以這就是JTE的作用所在。在一些高壓的器件中,甚至JTE的面積會(huì)大于Active Cell的面積。

柵極焊盤,開爾文源極焊盤

(Gate Pad,Kelvin Source Pad )

柵極pad主要作用就一個(gè),把柵極的信號(hào)傳輸?shù)礁鱾€(gè)開關(guān)單元,同時(shí)提一下,安森美的芯片是集成了柵極電阻的,這樣在模塊封裝上可以節(jié)省空間和一些成本。

開爾文源極主要是增加了開關(guān)速度,減小開關(guān)損耗。不過在做并聯(lián)使用的時(shí)候,就需要特別的設(shè)計(jì)來使用它。

開關(guān)單元

(Active Cell)

電流導(dǎo)通和關(guān)閉的路徑;

所有的單元是并聯(lián);

固定的單元特性下,單元的數(shù)量決定了整個(gè)芯片的導(dǎo)通電阻大小和短路電流能力;

目前主要分為平面和溝槽兩種結(jié)構(gòu)。

現(xiàn)在,我們已經(jīng)對(duì)SiC MOSFET的表面layout有了認(rèn)識(shí),在SiC的芯片里Edge terminal和Active Cell是非常重要的兩部分,安森美在JTE的設(shè)計(jì)上具有豐富的經(jīng)驗(yàn),在SiC MOSET上已經(jīng)從M1發(fā)展到了M3,通過幾代的技術(shù)迭代發(fā)展,JTE設(shè)計(jì)仿真和制造非常的成熟。我們來總結(jié)一下JTE的一些特點(diǎn)和一些設(shè)計(jì)考慮因素。

SiC JTE(結(jié)延伸區(qū))是用于改善硅碳化物(SiC)功率器件電壓阻斷能力的結(jié)構(gòu)。SiC JTE的設(shè)計(jì)對(duì)于實(shí)現(xiàn)所需的擊穿電壓并避免因器件邊緣處高電場(chǎng)而導(dǎo)致的過早擊穿至關(guān)重要。

以下是SiC JTE設(shè)計(jì)的一些關(guān)鍵考慮因素:

1. JTE區(qū)域的寬度和摻雜:JTE區(qū)域的寬度和摻雜濃度確定器件邊緣處的電場(chǎng)分布。較寬和重?fù)絁TE區(qū)域可以減少電場(chǎng)并提高擊穿電壓。

2. JTE的錐角和深度:JTE的錐角和深度影響電場(chǎng)分布和擊穿電壓。較小的錐角和較深的JTE可以減少電場(chǎng)并提高擊穿電壓。

3. 表面鈍化:表面鈍化層對(duì)于減少表面泄漏并提高擊穿電壓非常重要。需要特別為SiC JTE器件精心設(shè)計(jì)和優(yōu)化鈍化層。

4. 熱設(shè)計(jì):SiC JTE器件可以在比其Si對(duì)應(yīng)物更高的溫度下工作。但是,高溫也可能降低器件性能和可靠性。因此,在SiC JTE設(shè)計(jì)過程中應(yīng)考慮熱設(shè)計(jì),如散熱和熱應(yīng)力。

總體而言,SiC JTE設(shè)計(jì)是一個(gè)復(fù)雜的過程,涉及各種設(shè)計(jì)參數(shù)之間的權(quán)衡。需要進(jìn)行仔細(xì)的優(yōu)化和仿真,以實(shí)現(xiàn)所需的器件性能和可靠性。

Active Cell開關(guān)單元 – SiC MOSFET的核心

我們可以把MOSFET(硅和碳化硅)根據(jù)它們的柵極結(jié)構(gòu)分成兩類:平面結(jié)構(gòu)溝槽結(jié)構(gòu),它們的示意圖如圖三所示。如果從結(jié)構(gòu)上來說,硅和碳化硅MOSFET是一樣的,但是從制造工藝和設(shè)計(jì)上來說,由于碳化硅材料和硅材料的特性導(dǎo)致它們要考慮的點(diǎn)大部分都不太一樣。比如SiC大量使用了干蝕刻(Dry etch),還有高溫離子注入工藝,注入的元素也不一樣。

4fc42946-cf04-11ed-bfe3-dac502259ad0.png500fd648-cf04-11ed-bfe3-dac502259ad0.png

圖三.MOSFET的平面結(jié)構(gòu)與溝槽結(jié)構(gòu)

當(dāng)前國際上的SiC MOSFET絕大部分都采用了圖三A的平面結(jié)構(gòu),有少部分的廠家采用了圖三B的溝槽結(jié)構(gòu)。從發(fā)展的角度來看,最終都會(huì)衍生到溝槽結(jié)構(gòu)。但是目前的平面結(jié)構(gòu)的潛力還是可以繼續(xù)深挖的,而溝槽結(jié)構(gòu)也沒有表現(xiàn)出它們應(yīng)當(dāng)有的水平,在這里我們引入一個(gè)統(tǒng)一的尺度來衡量它們的性能 - Rsp(Rdson * area),標(biāo)識(shí)的是單位面積里的導(dǎo)通電阻大小。平面結(jié)構(gòu)的SiC MOSFET具有可靠性高,設(shè)計(jì)加工簡(jiǎn)單的優(yōu)點(diǎn)

安森美用在汽車主驅(qū)逆變器里的SiC MOSFET的Rsp 從第一代M1的4.2 m? * cm2降低到M2的2.6 m? * cm2,目前的最新的M3e常溫下的Rsp性能和友商的溝槽結(jié)構(gòu)的SiC MOSFET的水平一致,而高溫下的Rsp則低于友商溝槽結(jié)構(gòu)SiC MOSFET的Rsp,達(dá)到了行業(yè)領(lǐng)先的水平。M3e的cell pitch值和目前的溝槽結(jié)構(gòu)的SiC MOSFET pitch值相當(dāng),這表明安森美在平面結(jié)構(gòu)的SiC MOSFET發(fā)展優(yōu)化到了一個(gè)相當(dāng)高的水平。當(dāng)然一個(gè)MOSFET的性能不僅僅看Rsp,還要考慮開關(guān)損耗。通過前幾代的SiC MOSFET發(fā)展,以及根據(jù)大量的客戶應(yīng)用反饋,安森美SiC MOSFET器件優(yōu)化了導(dǎo)通損耗、開通損耗、反向恢復(fù)損耗以及短路時(shí)間,使得它們?cè)诳蛻舻膽?yīng)用中達(dá)到最優(yōu)化的一個(gè)效率。

SiC MOSFET的平面結(jié)構(gòu)的Active Cell的設(shè)計(jì)制造方向主要是減小開關(guān)單元間距也就是pitch值,提升開關(guān)單元的密度,減小Rdson,提升柵極氧化層的可靠性。

如圖三A中的結(jié)構(gòu)為了盡可能的減小導(dǎo)通電阻,需要調(diào)整開關(guān)單元的間距,pitch值和Wg也就是柵極的寬度有一定的關(guān)系,pitch值變小,Wg也相應(yīng)變小,這個(gè)對(duì)于柵極的可靠性是有一定好處的,在SiC MOSFET里,柵極氧化層(Gate Oxide)非常的薄,小于100納米,因此在SiC的生產(chǎn)工藝中使用了干式蝕刻的方法來控制加工的精度。

根據(jù)圖三A中的導(dǎo)通電阻示意圖,我們可以得出Rdson = Rs + Rch + Ra + Rjfet + Rdrif + Rsub, 在這里面Rch和Ra占比最大,超過60%以上,所以它們變成了設(shè)計(jì)和工藝優(yōu)化的一個(gè)重點(diǎn)方向之一。不過也不是一味的減小開關(guān)單元柵極的寬度就可以減小Rsp,柵極的Wg寬度減小到一定范圍,反而會(huì)導(dǎo)致Rsp變大,在設(shè)計(jì)的時(shí)候需要綜合考慮以上的參數(shù)相互之間的影響,這樣才能獲得一個(gè)比較理想的優(yōu)化結(jié)果,安森美經(jīng)過幾代的工藝迭代發(fā)展,其平面結(jié)構(gòu)的SiC MOSFET上已經(jīng)在性能,良率、可靠性等方面發(fā)展得相對(duì)成熟。

在芯片里,每個(gè)active cell是并聯(lián)在一起的,圖四是一個(gè)芯片的截面圖的示意圖,在這里采用的是帶狀結(jié)構(gòu)的布局。從這里大家會(huì)對(duì)于芯片可以有更形象的了解。

4fc42946-cf04-11ed-bfe3-dac502259ad0.png

5042b6ee-cf04-11ed-bfe3-dac502259ad0.png

圖四.芯片的截面圖

以下是SiC MOSFET Rdson設(shè)計(jì)的一些關(guān)鍵考慮因素:

1. 通道寬度和摻雜:SiC MOSFET的通道寬度和摻雜濃度會(huì)影響Rdson和電流密度。較寬和重?fù)降耐ǖ揽梢越档蚏dson并提高電流承載能力。

2. 柵極氧化層厚度:柵極氧化層的厚度影響柵極電容,進(jìn)而影響開關(guān)速度和Rdson。較薄的柵極氧化物可以提高開關(guān)速度,但也可能增加?xùn)艠O漏電流,并增加氧化層擊穿失效的風(fēng)險(xiǎn)。

3. 柵極設(shè)計(jì):柵極設(shè)計(jì)影響柵極電阻,進(jìn)而影響開關(guān)速度和Rdson。較低的柵極電阻可以提高開關(guān)速度,但也可能增加?xùn)艠O電容。

總體而言,SiC MOSFET Rdson設(shè)計(jì)是一個(gè)復(fù)雜的過程,涉及綜合考慮各個(gè)參數(shù)之間的相互影響。需要進(jìn)行仔細(xì)的優(yōu)化和仿真并且進(jìn)行試驗(yàn)和測(cè)試,以實(shí)現(xiàn)所需的器件性能和可靠性。

集成片上柵極電阻

安森美所有針對(duì)主驅(qū)逆變器開發(fā)的SiC MOSFET都集成了柵極的電阻,我們可以從圖五看到有無電阻的區(qū)別。圖五A是不需要柵極電阻(芯片上集成了),圖五B是需要額外加一個(gè)柵極電阻。

50669ac8-cf04-11ed-bfe3-dac502259ad0.png

圖五.有無柵極電阻的區(qū)別

集成柵極電阻會(huì)給模塊設(shè)計(jì)和制造帶來一些好處:

簡(jiǎn)化了模塊綁定線的工藝,降低了失效率。

減少了焊接電阻到DBC的工藝

降低了BOM和制造成本

便于封裝的相對(duì)小型化設(shè)計(jì)和制造

SiC MOSFET的設(shè)計(jì)制造工藝非常復(fù)雜,本文對(duì)其流程與一些關(guān)鍵考慮因素進(jìn)行了簡(jiǎn)要介紹,希望能讓大家對(duì)SiC MOSFET的設(shè)計(jì)和制造有一個(gè)概念。

安森美在SiC功率器件的設(shè)計(jì)和制造領(lǐng)域擁有十多年的經(jīng)驗(yàn),我們的SiC MOSFET產(chǎn)品經(jīng)過幾代的迭代發(fā)展,無論是性能還是品質(zhì)和可靠性都已經(jīng)穩(wěn)定和具有競(jìng)爭(zhēng)力,非常歡迎選擇和使用我們的SiC MOSFET產(chǎn)品。

點(diǎn)個(gè)星標(biāo),茫茫人海也能一眼看到我

5079a97e-cf04-11ed-bfe3-dac502259ad0.gif

50b0fb7c-cf04-11ed-bfe3-dac502259ad0.jpg

點(diǎn)贊、在看,記得兩連~」


原文標(biāo)題:一文為您揭秘碳化硅芯片的設(shè)計(jì)和制造

文章出處:【微信公眾號(hào):安森美】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 安森美
    +關(guān)注

    關(guān)注

    32

    文章

    1768

    瀏覽量

    92789

原文標(biāo)題:一文為您揭秘碳化硅芯片的設(shè)計(jì)和制造

文章出處:【微信號(hào):onsemi-china,微信公眾號(hào):安森美】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    碳化硅薄膜沉積技術(shù)介紹

    多晶碳化硅和非晶碳化硅在薄膜沉積方面各具特色。多晶碳化硅以其廣泛的襯底適應(yīng)性、制造優(yōu)勢(shì)和多樣的沉積技術(shù)而著稱;而非晶碳化硅則以其極低的沉積溫
    的頭像 發(fā)表于 02-05 13:49 ?595次閱讀
    <b class='flag-5'>碳化硅</b>薄膜沉積技術(shù)介紹

    碳化硅在半導(dǎo)體中的作用

    碳化硅(SiC)在半導(dǎo)體中扮演著至關(guān)重要的角色,其獨(dú)特的物理和化學(xué)特性使其成為制作高性能半導(dǎo)體器件的理想材料。以下是碳化硅在半導(dǎo)體中的主要作用及優(yōu)勢(shì): 碳化硅的物理特性
    的頭像 發(fā)表于 01-23 17:09 ?1028次閱讀

    產(chǎn)SiC碳化硅MOSFET功率模塊在工商業(yè)儲(chǔ)能變流器PCS中的應(yīng)用

    *附件:國產(chǎn)SiC碳化硅MOSFET功率模塊在工商業(yè)儲(chǔ)能變流器PCS中的應(yīng)用.pdf
    發(fā)表于 01-20 14:19

    不同的碳化硅襯底的吸附方案,對(duì)測(cè)量碳化硅襯底 BOW/WARP 的影響

    在當(dāng)今蓬勃發(fā)展的半導(dǎo)體產(chǎn)業(yè)中,碳化硅(SiC)襯底作為關(guān)鍵基礎(chǔ)材料,正引領(lǐng)著高性能芯片制造邁向新的臺(tái)階。對(duì)于碳化硅襯底而言,其 BOW(彎曲度)和 WARP(翹曲度)參數(shù)猶如精密天平上
    的頭像 發(fā)表于 01-14 10:23 ?400次閱讀
    不同的<b class='flag-5'>碳化硅</b>襯底的吸附方案,對(duì)測(cè)量<b class='flag-5'>碳化硅</b>襯底 BOW/WARP 的影響

    什么是MOSFET柵極氧化層?如何測(cè)試SiC碳化硅MOSFET的柵氧可靠性?

    具有決定性的影響。因此,深入理解柵極氧化層的特性,并掌握其可靠性測(cè)試方法,對(duì)于推動(dòng)碳化硅 MOSFET的應(yīng)用和發(fā)展具有重要意義。今天的“SiC科普小課堂”將聚焦于“柵極氧化層”這新話題:“什么是柵極
    發(fā)表于 01-04 12:37

    碳化硅在新能源領(lǐng)域的應(yīng)用 碳化硅在汽車工業(yè)中的應(yīng)用

    碳化硅在新能源領(lǐng)域的應(yīng)用 1. 太陽能光伏 碳化硅材料在太陽能光伏領(lǐng)域主要應(yīng)用于制造高性能的太陽能電池。由于其高熱導(dǎo)率和良好的化學(xué)穩(wěn)定性,碳化硅可以作為太陽能電池的基底材料,提高電池的
    的頭像 發(fā)表于 11-29 09:31 ?943次閱讀

    碳化硅的應(yīng)用領(lǐng)域 碳化硅材料的特性與優(yōu)勢(shì)

    碳化硅的應(yīng)用領(lǐng)域 碳化硅(SiC),作為種寬禁帶半導(dǎo)體材料,因其獨(dú)特的物理和化學(xué)特性,在多個(gè)領(lǐng)域展現(xiàn)出廣泛的應(yīng)用潛力。以下是碳化硅些主
    的頭像 發(fā)表于 11-29 09:27 ?4709次閱讀

    碳化硅SiC制造工藝詳解 碳化硅SiC與傳統(tǒng)半導(dǎo)體對(duì)比

    碳化硅SiC制造工藝詳解 碳化硅(SiC)作為種高性能的半導(dǎo)體材料,其制造工藝涉及多個(gè)復(fù)雜步驟,以下是對(duì)SiC
    的頭像 發(fā)表于 11-25 16:32 ?4023次閱讀

    碳化硅襯底,進(jìn)化到12英寸!

    電子發(fā)燒友網(wǎng)報(bào)道(/梁浩斌)碳化硅產(chǎn)業(yè)當(dāng)前主流的晶圓尺寸是6英寸,并正在大規(guī)模往8英寸發(fā)展,在最上游的晶體、襯底,業(yè)界已經(jīng)具備大量產(chǎn)能,8英寸的碳化硅晶圓產(chǎn)線也開始逐漸落地,進(jìn)入試產(chǎn)階段。 ? 讓
    的頭像 發(fā)表于 11-21 00:01 ?3883次閱讀
    <b class='flag-5'>碳化硅</b>襯底,進(jìn)化到12英寸!

    Wolfspeed推出創(chuàng)新碳化硅模塊

    全球領(lǐng)先的芯片制造商 Wolfspeed 近日宣布了項(xiàng)重大技術(shù)創(chuàng)新,成功推出了款專為可再生能源、儲(chǔ)能系統(tǒng)以及高容量快速充電領(lǐng)域設(shè)計(jì)的碳化硅
    的頭像 發(fā)表于 09-12 17:13 ?785次閱讀

    碳化硅功率器件的優(yōu)點(diǎn)和應(yīng)用

    碳化硅(SiliconCarbide,簡(jiǎn)稱SiC)功率器件是近年來電力電子領(lǐng)域的項(xiàng)革命性技術(shù)。與傳統(tǒng)的硅基功率器件相比,碳化硅功率器件在性能和效率方面具有顯著優(yōu)勢(shì)。本文將深入探討碳化硅
    的頭像 發(fā)表于 09-11 10:44 ?987次閱讀
    <b class='flag-5'>碳化硅</b>功率器件的優(yōu)點(diǎn)和應(yīng)用

    碳化硅晶圓和硅晶圓的區(qū)別是什么

    以下是關(guān)于碳化硅晶圓和硅晶圓的區(qū)別的分析: 材料特性: 碳化硅(SiC)是種寬禁帶半導(dǎo)體材料,具有比硅(Si)更高的熱導(dǎo)率、電子遷移率和擊穿電場(chǎng)。這使得碳化硅晶圓在高溫、高壓和高頻應(yīng)
    的頭像 發(fā)表于 08-08 10:13 ?2779次閱讀

    碳化硅功率器件的優(yōu)勢(shì)和分類

    碳化硅(SiC)功率器件是利用碳化硅材料制造的半導(dǎo)體器件,主要用于高頻、高溫、高壓和高功率的電子應(yīng)用。相比傳統(tǒng)的硅(Si)基功率器件,碳化硅功率器件具有更高的禁帶寬度、更高的臨界擊穿電
    的頭像 發(fā)表于 08-07 16:22 ?1137次閱讀
    <b class='flag-5'>碳化硅</b>功率器件的優(yōu)勢(shì)和分類

    Wolfspeed碳化硅制造工廠取得顯著進(jìn)展

    在全球半導(dǎo)體技術(shù)持續(xù)革新的浪潮中,碳化硅芯片作為新代功率半導(dǎo)體器件的核心材料,正逐步成為市場(chǎng)的新寵。近日,半導(dǎo)體制造領(lǐng)域的佼佼者Wolfspeed公司宣布,其
    的頭像 發(fā)表于 06-27 14:33 ?902次閱讀