女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

串口有必要使用DMA嗎

FPGA之家 ? 來源:CSDN ? 作者:CSDN ? 2022-10-20 11:12 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群


偶然看到一篇很干文章,整理分享給大家:

1 前言

直接存儲器訪問(Direct Memory Access),簡稱DMA。DMA是CPU一個用于數據從一個地址空間到另一地址空間“搬運”(拷貝)的組件,數據拷貝過程不需CPU干預,數據拷貝結束則通知CPU處理。

因此,大量數據拷貝時,使用DMA可以釋放CPU資源。DMA數據拷貝過程,典型的有:

  • 內存—>內存,內存間拷貝
  • 外設—>內存,如uart、spi、i2c等總線接收數據過程
  • 內存—>外設,如uart、spi、i2c等總線發送數據過程

2 串口有必要使用DMA嗎

串口(uart)是一種低速的串行異步通信,適用于低速通信場景,通常使用的波特率小于或等于115200bps。

對于小于或者等于115200bps波特率的,而且數據量不大的通信場景,一般沒必要使用DMA,或者說使用DMA并未能充分發揮出DMA的作用。

對于數量大,或者波特率提高時,必須使用DMA以釋放CPU資源,因為高波特率可能帶來這樣的問題:

  • 對于發送,使用循環發送,可能阻塞線程,需要消耗大量CPU資源“搬運”數據,浪費CPU
  • 對于發送,使用中斷發送,不會阻塞線程,但需浪費大量中斷資源,CPU頻繁響應中斷;以115200bps波特率,1s傳輸11520字節,大約69us需響應一次中斷,如波特率再提高,將消耗更多CPU資源
  • 對于接收,如仍采用傳統的中斷模式接收,同樣會因為頻繁中斷導致消耗大量CPU資源

因此,高波特率場景下,串口非常有必要使用DMA。

3 實現方式

3727413c-3f8c-11ed-9e49-dac502259ad0.png整體設計圖

4 STM32串口使用DMA

關于STM32串口使用DMA,不乏一些開發板例程及網絡上一些博主的使用教程。使用步驟、流程、配置基本大同小異,正確性也沒什么毛病,但都是一些基本的Demo例子,作為學習過程沒問題;實際項目使用缺乏嚴謹性,數據量大時可能導致數據異常。

測試平臺:

  • STM32F030C8T6
  • UART1/UART2
  • DMA1 Channel2—Channel5
  • ST標準庫
  • 主頻48MHz(外部12MHz晶振)
3753ef8e-3f8c-11ed-9e49-dac502259ad0.png在這里插入圖片描述

5 串口DMA接收

5.1 基本流程

3791e794-3f8c-11ed-9e49-dac502259ad0.png串口接收流程圖

5.2 相關配置

關鍵步驟

【1】初始化串口

【2】使能串口DMA接收模式,使能串口空閑中斷

【3】配置DMA參數,使能DMA通道buf半滿(傳輸一半數據)中斷、buf溢滿(傳輸數據完成)中斷

為什么需要使用DMA 通道buf半滿中斷?

很多串口DMA模式接收的教程、例子,基本是使用了“空間中斷”+“DMA傳輸完成中斷”來接收數據。

實質上這是存在風險的,當DMA傳輸數據完成,CPU介入開始拷貝DMA通道buf數據,如果此時串口繼續有數據進來,DMA繼續搬運數據到buf,就有可能將數據覆蓋,因為DMA數據搬運是不受CPU控制的,即使你關閉了CPU中斷。

嚴謹的做法需要做雙buf,CPU和DMA各自一塊內存交替訪問,即是"乒乓緩存” ,處理流程步驟應該是這樣:

【1】第一步,DMA先將數據搬運到buf1,搬運完成通知CPU來拷貝buf1數據

【2】第二步,DMA將數據搬運到buf2,與CPU拷貝buf1數據不會沖突

【3】第三步,buf2數據搬運完成,通知CPU來拷貝buf2數據

【4】執行完第三步,DMA返回執行第一步,一直循環

37b36b62-3f8c-11ed-9e49-dac502259ad0.png雙緩存DMA數據搬運過程

STM32F0系列DMA不支持雙緩存(以具體型號為準)機制,但提供了一個buf"半滿中斷"。

即是數據搬運到buf大小的一半時,可以產生一個中斷信號。基于這個機制,我們可以實現雙緩存功能,只需將buf空間開辟大一點即可。

【1】第一步,DMA將數據搬運完成buf的前一半時,產生“半滿中斷”,CPU來拷貝buf前半部分數據

【2】第二步,DMA繼續將數據搬運到buf的后半部分,與CPU拷貝buf前半部數據不會沖突

【3】第三步,buf后半部分數據搬運完成,觸發“溢滿中斷”,CPU來拷貝buf后半部分數據

【4】執行完第三步,DMA返回執行第一步,一直循環

37f0801a-3f8c-11ed-9e49-dac502259ad0.png使用半滿中斷DMA數據搬運過程

UART2 DMA模式接收配置代碼如下,與其他外設使用DMA的配置基本一致,留意關鍵配置:

  • 串口接收,DMA通道工作模式設為連續模式
  • 使能DMA通道接收buf半滿中斷、溢滿(傳輸完成)中斷
  • 啟動DMA通道前清空相關狀態標識,防止首次傳輸錯亂數據
左右滑動查看全部代碼>>>
voidbsp_uart2_dmarx_config(uint8_t*mem_addr,uint32_tmem_size)
{
DMA_InitTypeDefDMA_InitStructure;

DMA_DeInit(DMA1_Channel5);
DMA_Cmd(DMA1_Channel5,DISABLE);
DMA_InitStructure.DMA_PeripheralBaseAddr=(uint32_t)&(USART2->RDR);/*UART2接收數據地址*/
DMA_InitStructure.DMA_MemoryBaseAddr=(uint32_t)mem_addr;/*接收buf*/
DMA_InitStructure.DMA_DIR=DMA_DIR_PeripheralSRC;/*傳輸方向:外設->內存*/
DMA_InitStructure.DMA_BufferSize=mem_size;/*接收buf大小*/
DMA_InitStructure.DMA_PeripheralInc=DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc=DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize=DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryDataSize=DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_Mode=DMA_Mode_Circular;/*連續模式*/
DMA_InitStructure.DMA_Priority=DMA_Priority_VeryHigh;
DMA_InitStructure.DMA_M2M=DMA_M2M_Disable;
DMA_Init(DMA1_Channel5,&DMA_InitStructure);
DMA_ITConfig(DMA1_Channel5,DMA_IT_TC|DMA_IT_HT|DMA_IT_TE,ENABLE);/*使能DMA半滿、溢滿、錯誤中斷*/
DMA_ClearFlag(DMA1_IT_TC5);/*清除相關狀態標識*/
DMA_ClearFlag(DMA1_IT_HT5);
DMA_Cmd(DMA1_Channel5,ENABLE);
}

DMA 錯誤中斷“DMA_IT_TE”,一般用于前期調試使用,用于檢查DMA出現錯誤的次數,發布軟件可以不使能該中斷。

5.3 接收處理

基于上述描述機制,DMA方式接收串口數據,有三種中斷場景需要CPU去將buf數據拷貝到fifo中,分別是:

  • DMA通道buf溢滿(傳輸完成)場景
  • DMA通道buf半滿場景
  • 串口空閑中斷場景

前兩者場景,前面文章已經描述。串口空閑中斷指的是,數據傳輸完成后,串口監測到一段時間內沒有數據進來,則觸發產生的中斷信號。

5.3 .1 接收數據大小

數據傳輸過程是隨機的,數據大小也是不定的,存在幾類情況:

  • 數據剛好是DMA接收buf的整數倍,這是理想的狀態
  • 數據量小于DMA接收buf或者小于接收buf的一半,此時會觸發串口空閑中斷

因此,我們需根據“DMA通道buf大小”、“DMA通道buf剩余空間大小”、“上一次接收的總數據大小”來計算當前接收的數據大小。

/*獲取DMA通道接收buf剩余空間大小*/
uint16_tDMA_GetCurrDataCounter(DMA_Channel_TypeDef*DMAy_Channelx);

DMA通道buf溢滿場景計算

接收數據大小=DMA通道buf大小-上一次接收的總數據大小

DMA通道buf溢滿中斷處理函數:

左右滑動查看全部代碼>>>

voiduart_dmarx_done_isr(uint8_tuart_id)
{
uint16_trecv_size;

recv_size=s_uart_dev[uart_id].dmarx_buf_size-s_uart_dev[uart_id].last_dmarx_size;

fifo_write(&s_uart_dev[uart_id].rx_fifo,
(constuint8_t*)&(s_uart_dev[uart_id].dmarx_buf[s_uart_dev[uart_id].last_dmarx_size]),recv_size);

s_uart_dev[uart_id].last_dmarx_size=0;
}

DMA通道buf半滿場景計算

接收數據大小=DMA通道接收總數據大小-上一次接收的總數據大小
DMA通道接收總數據大小=DMA通道buf大小-DMA通道buf剩余空間大小

DMA通道buf半滿中斷處理函數:

左右滑動查看全部代碼>>>

voiduart_dmarx_half_done_isr(uint8_tuart_id)
{
uint16_trecv_total_size;
uint16_trecv_size;

if(uart_id==0)
{
recv_total_size=s_uart_dev[uart_id].dmarx_buf_size-bsp_uart1_get_dmarx_buf_remain_size();
}
elseif(uart_id==1)
{
recv_total_size=s_uart_dev[uart_id].dmarx_buf_size-bsp_uart2_get_dmarx_buf_remain_size();
}
recv_size=recv_total_size-s_uart_dev[uart_id].last_dmarx_size;

fifo_write(&s_uart_dev[uart_id].rx_fifo,
(constuint8_t*)&(s_uart_dev[uart_id].dmarx_buf[s_uart_dev[uart_id].last_dmarx_size]),recv_size);
s_uart_dev[uart_id].last_dmarx_size=recv_total_size;/*記錄接收總數據大小*/
}

串口空閑中斷場景計算

串口空閑中斷場景的接收數據計算與“DMA通道buf半滿場景”計算方式是一樣的。

串口空閑中斷處理函數:

左右滑動查看全部代碼>>>

voiduart_dmarx_idle_isr(uint8_tuart_id)
{
uint16_trecv_total_size;
uint16_trecv_size;

if(uart_id==0)
{
recv_total_size=s_uart_dev[uart_id].dmarx_buf_size-bsp_uart1_get_dmarx_buf_remain_size();
}
elseif(uart_id==1)
{
recv_total_size=s_uart_dev[uart_id].dmarx_buf_size-bsp_uart2_get_dmarx_buf_remain_size();
}
recv_size=recv_total_size-s_uart_dev[uart_id].last_dmarx_size;
s_UartTxRxCount[uart_id*2+1]+=recv_size;
fifo_write(&s_uart_dev[uart_id].rx_fifo,
(constuint8_t*)&(s_uart_dev[uart_id].dmarx_buf[s_uart_dev[uart_id].last_dmarx_size]),recv_size);
s_uart_dev[uart_id].last_dmarx_size=recv_total_size;
}

注:串口空閑中斷處理函數,除了將數據拷貝到串口接收fifo中,還可以增加特殊處理,如作為串口數據傳輸完成標識、不定長度數據處理等等。

5.3.2 接收數據偏移地址

將有效數據拷貝到fifo中,除了需知道有效數據大小外,還需知道數據存儲于DMA 接收buf的偏移地址。

有效數據偏移地址只需記錄上一次接收的總大小即,可,在DMA通道buf全滿中斷處理函數將該值清零,因為下一次數據將從buf的開頭存儲。

在DMA通道buf溢滿中斷處理函數中將數據偏移地址清零:

voiduart_dmarx_done_isr(uint8_tuart_id)
{
/*todo*/
s_uart_dev[uart_id].last_dmarx_size=0;
}

5.4 應用讀取串口數據方法

經過前面的處理步驟,已將串口數據拷貝至接收fifo,應用程序任務只需從fifo獲取數據進行處理。前提是,處理效率必須大于DAM接收搬運數據的效率,否則導致數據丟失或者被覆蓋處理。

6 串口DMA發送

5.1 基本流程

3805199e-3f8c-11ed-9e49-dac502259ad0.png串口發送流程圖

5.2 相關配置

關鍵步驟

【1】初始化串口

【2】使能串口DMA發送模式

【3】配置DMA發送通道,這一步無需在初始化設置,有數據需要發送時才配置使能DMA發送通道

UART2 DMA模式發送配置代碼如下,與其他外設使用DMA的配置基本一致,留意關鍵配置:

  • 串口發送是,DMA通道工作模式設為單次模式(正常模式),每次需要發送數據時重新配置DMA
  • 使能DMA通道傳輸完成中斷,利用該中斷信息處理一些必要的任務,如清空發送狀態、啟動下一次傳輸
  • 啟動DMA通道前清空相關狀態標識,防止首次傳輸錯亂數據
左右滑動查看全部代碼>>>
voidbsp_uart2_dmatx_config(uint8_t*mem_addr,uint32_tmem_size)
{
DMA_InitTypeDefDMA_InitStructure;

DMA_DeInit(DMA1_Channel4);
DMA_Cmd(DMA1_Channel4,DISABLE);
DMA_InitStructure.DMA_PeripheralBaseAddr=(uint32_t)&(USART2->TDR);/*UART2發送數據地址*/
DMA_InitStructure.DMA_MemoryBaseAddr=(uint32_t)mem_addr;/*發送數據buf*/
DMA_InitStructure.DMA_DIR=DMA_DIR_PeripheralDST;/*傳輸方向:內存->外設*/
DMA_InitStructure.DMA_BufferSize=mem_size;/*發送數據buf大小*/
DMA_InitStructure.DMA_PeripheralInc=DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc=DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize=DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryDataSize=DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_Mode=DMA_Mode_Normal;/*單次模式*/
DMA_InitStructure.DMA_Priority=DMA_Priority_High;
DMA_InitStructure.DMA_M2M=DMA_M2M_Disable;
DMA_Init(DMA1_Channel4,&DMA_InitStructure);
DMA_ITConfig(DMA1_Channel4,DMA_IT_TC|DMA_IT_TE,ENABLE);/*使能傳輸完成中斷、錯誤中斷*/
DMA_ClearFlag(DMA1_IT_TC4);/*清除發送完成標識*/
DMA_Cmd(DMA1_Channel4,ENABLE);/*啟動DMA發送*/
}

5.3 發送處理

串口待發送數據存于發送fifo中,發送處理函數需要做的的任務就是循環查詢發送fifo是否存在數據,如存在則將該數據拷貝到DMA發送buf中,然后啟動DMA傳輸。

前提是需要等待上一次DMA傳輸完畢,即是DMA接收到DMA傳輸完成中斷信號"DMA_IT_TC"。

串口發送處理函數:

左右滑動查看全部代碼>>>

voiduart_poll_dma_tx(uint8_tuart_id)
{
uint16_tsize=0;

if(0x01==s_uart_dev[uart_id].status)
{
return;
}
size=fifo_read(&s_uart_dev[uart_id].tx_fifo,s_uart_dev[uart_id].dmatx_buf,
s_uart_dev[uart_id].dmatx_buf_size);
if(size!=0)
{
s_UartTxRxCount[uart_id*2+0]+=size;
if(uart_id==0)
{
s_uart_dev[uart_id].status=0x01;/*DMA發送狀態*/
bsp_uart1_dmatx_config(s_uart_dev[uart_id].dmatx_buf,size);
}
elseif(uart_id==1)
{
s_uart_dev[uart_id].status=0x01;/*DMA發送狀態,必須在使能DMA傳輸前置位,否則有可能DMA已經傳輸并進入中斷*/
bsp_uart2_dmatx_config(s_uart_dev[uart_id].dmatx_buf,size);
}
}
}
  • 注意發送狀態標識,必須先置為“發送狀態”,然后啟動DMA 傳輸。如果步驟反過來,在傳輸數據量少時,DMA傳輸時間短,“DMA_IT_TC”中斷可能比“發送狀態標識置位”先執行,導致程序誤判DMA一直處理發送狀態(發送標識無法被清除)。

注:關于DMA發送數據啟動函數,有些博客文章描述只需改變DMA發送buf的大小即可;經過測試發現,該方法在發送數據量較小時可行,數據量大后,導致發送失敗,而且不會觸發DMA發送完成中斷。因此,可靠辦法是:每次啟動DMA發送,重新配置DMA通道所有參數。該步驟只是配置寄存器過程,實質上不會占用很多CPU執行時間。

DMA傳輸完成中斷處理函數:

voiduart_dmatx_done_isr(uint8_tuart_id)
{
s_uart_dev[uart_id].status=0;/*清空DMA發送狀態標識*/
}

上述串口發送處理函數可以在幾種情況調用:

  • 主線程任務調用,前提是線程不能被其他任務阻塞,否則導致fifo溢出
voidthread(void)
{
uart_poll_dma_tx(DEV_UART1);
uart_poll_dma_tx(DEV_UART2);
}
voidTIMx_IRQHandler(void)
{
uart_poll_dma_tx(DEV_UART1);
uart_poll_dma_tx(DEV_UART2);
}
  • DMA通道傳輸完成中斷中調用
voidDMA1_Channel4_5_IRQHandler(void)
{
if(DMA_GetITStatus(DMA1_IT_TC4))
{
UartDmaSendDoneIsr(UART_2);
DMA_ClearFlag(DMA1_FLAG_TC4);
uart_poll_dma_tx(DEV_UART2);
}
}

每次拷貝多少數據量到DMA發送buf:

關于這個問題,與具體應用場景有關,遵循的原則就是:只要發送fifo的數據量大于等于DMA發送buf的大小,就應該填滿DMA發送buf,然后啟動DMA傳輸,這樣才能充分發揮會DMA性能。

因此,需兼顧每次DMA傳輸的效率和串口數據流實時性,參考著幾類實現:

  • 周期查詢發送fifo數據,啟動DMA傳輸,充分利用DMA發送效率,但可能降低串口數據流實時性
  • 實時查詢發送fifo數據,加上超時處理,理想的方法
  • 在DMA傳輸完成中斷中處理,保證實時連續數據流

6 串口設備

6.1 數據結構

/*串口設備數據結構*/
typedefstruct
{
uint8_tstatus;/*發送狀態*/
_fifo_ttx_fifo;/*發送fifo*/
_fifo_trx_fifo;/*接收fifo*/
uint8_t*dmarx_buf;/*dma接收緩存*/
uint16_tdmarx_buf_size;/*dma接收緩存大小*/
uint8_t*dmatx_buf;/*dma發送緩存*/
uint16_tdmatx_buf_size;/*dma發送緩存大小*/
uint16_tlast_dmarx_size;/*dma上一次接收數據大小*/
}uart_device_t;

6.2 對外接口

左右滑動查看全部代碼>>>
/*串口注冊初始化函數*/
voiduart_device_init(uint8_tuart_id)
{
if(uart_id==1)
{
/*配置串口2收發fifo*/
fifo_register(&s_uart_dev[uart_id].tx_fifo,&s_uart2_tx_buf[0],
sizeof(s_uart2_tx_buf),fifo_lock,fifo_unlock);
fifo_register(&s_uart_dev[uart_id].rx_fifo,&s_uart2_rx_buf[0],
sizeof(s_uart2_rx_buf),fifo_lock,fifo_unlock);

/*配置串口2DMA收發buf*/
s_uart_dev[uart_id].dmarx_buf=&s_uart2_dmarx_buf[0];
s_uart_dev[uart_id].dmarx_buf_size=sizeof(s_uart2_dmarx_buf);
s_uart_dev[uart_id].dmatx_buf=&s_uart2_dmatx_buf[0];
s_uart_dev[uart_id].dmatx_buf_size=sizeof(s_uart2_dmatx_buf);
bsp_uart2_dmarx_config(s_uart_dev[uart_id].dmarx_buf,
sizeof(s_uart2_dmarx_buf));
s_uart_dev[uart_id].status=0;
}
}

/*串口發送函數*/
uint16_tuart_write(uint8_tuart_id,constuint8_t*buf,uint16_tsize)
{
returnfifo_write(&s_uart_dev[uart_id].tx_fifo,buf,size);
}

/*串口讀取函數*/
uint16_tuart_read(uint8_tuart_id,uint8_t*buf,uint16_tsize)
{
returnfifo_read(&s_uart_dev[uart_id].rx_fifo,buf,size);
}

7 相關文章

依賴的fifo參考該文章:

通用環形緩沖區模塊:

https://acuity.blog.csdn.net/article/details/78902689

8 完整源碼

代碼倉庫:

https://github.com/Prry/stm32f0-uart-dma

串口&DMA底層配置:

左右滑動查看全部代碼>>>

#include
#include
#include
#include"stm32f0xx.h"
#include"bsp_uart.h"

/**
*@brief
*@param
*@retval
*/
staticvoidbsp_uart1_gpio_init(void)
{
GPIO_InitTypeDefGPIO_InitStructure;
#if0
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOB,ENABLE);

GPIO_PinAFConfig(GPIOB,GPIO_PinSource6,GPIO_AF_0);
GPIO_PinAFConfig(GPIOB,GPIO_PinSource7,GPIO_AF_0);

GPIO_InitStructure.GPIO_Pin=GPIO_Pin_6|GPIO_Pin_7;
GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF;
GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;
GPIO_InitStructure.GPIO_Speed=GPIO_Speed_Level_3;
GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_UP;
GPIO_Init(GPIOB,&GPIO_InitStructure);
#else
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA,ENABLE);

GPIO_PinAFConfig(GPIOB,GPIO_PinSource9,GPIO_AF_1);
GPIO_PinAFConfig(GPIOB,GPIO_PinSource10,GPIO_AF_1);

GPIO_InitStructure.GPIO_Pin=GPIO_Pin_9|GPIO_Pin_10;
GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF;
GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;
GPIO_InitStructure.GPIO_Speed=GPIO_Speed_Level_3;
GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_UP;
GPIO_Init(GPIOA,&GPIO_InitStructure);
#endif
}

/**
*@brief
*@param
*@retval
*/
staticvoidbsp_uart2_gpio_init(void)
{
GPIO_InitTypeDefGPIO_InitStructure;

RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOB,ENABLE);

GPIO_PinAFConfig(GPIOA,GPIO_PinSource2,GPIO_AF_1);
GPIO_PinAFConfig(GPIOA,GPIO_PinSource3,GPIO_AF_1);

GPIO_InitStructure.GPIO_Pin=GPIO_Pin_2|GPIO_Pin_3;
GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF;
GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;
GPIO_InitStructure.GPIO_Speed=GPIO_Speed_10MHz;
GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_UP;
GPIO_Init(GPIOA,&GPIO_InitStructure);
}

/**
*@brief
*@param
*@retval
*/
voidbsp_uart1_init(void)
{
USART_InitTypeDefUSART_InitStructure;
NVIC_InitTypeDefNVIC_InitStructure;

bsp_uart1_gpio_init();

/*使能串口和DMA時鐘*/
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1,ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE);

USART_InitStructure.USART_BaudRate=57600;
USART_InitStructure.USART_WordLength=USART_WordLength_8b;
USART_InitStructure.USART_StopBits=USART_StopBits_1;
USART_InitStructure.USART_Parity=USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl=USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode=USART_Mode_Rx|USART_Mode_Tx;
USART_Init(USART1,&USART_InitStructure);

USART_ITConfig(USART1,USART_IT_IDLE,ENABLE);/*使能空閑中斷*/
USART_OverrunDetectionConfig(USART1,USART_OVRDetection_Disable);

USART_Cmd(USART1,ENABLE);
USART_DMACmd(USART1,USART_DMAReq_Rx|USART_DMAReq_Tx,ENABLE);/*使能DMA收發*/

/*串口中斷*/
NVIC_InitStructure.NVIC_IRQChannel=USART1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPriority=2;
NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE;
NVIC_Init(&NVIC_InitStructure);

/*DMA中斷*/
NVIC_InitStructure.NVIC_IRQChannel=DMA1_Channel2_3_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPriority=0;
NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE;
NVIC_Init(&NVIC_InitStructure);
}

/**
*@brief
*@param
*@retval
*/
voidbsp_uart2_init(void)
{
USART_InitTypeDefUSART_InitStructure;
NVIC_InitTypeDefNVIC_InitStructure;

bsp_uart2_gpio_init();

/*使能串口和DMA時鐘*/
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1,ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2,ENABLE);

USART_InitStructure.USART_BaudRate=57600;
USART_InitStructure.USART_WordLength=USART_WordLength_8b;
USART_InitStructure.USART_StopBits=USART_StopBits_1;
USART_InitStructure.USART_Parity=USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl=USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode=USART_Mode_Rx|USART_Mode_Tx;
USART_Init(USART2,&USART_InitStructure);

USART_ITConfig(USART2,USART_IT_IDLE,ENABLE);/*使能空閑中斷*/
USART_OverrunDetectionConfig(USART2,USART_OVRDetection_Disable);

USART_Cmd(USART2,ENABLE);
USART_DMACmd(USART2,USART_DMAReq_Rx|USART_DMAReq_Tx,ENABLE);/*使能DMA收發*/

/*串口中斷*/
NVIC_InitStructure.NVIC_IRQChannel=USART2_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPriority=2;
NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE;
NVIC_Init(&NVIC_InitStructure);

/*DMA中斷*/
NVIC_InitStructure.NVIC_IRQChannel=DMA1_Channel4_5_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPriority=0;
NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE;
NVIC_Init(&NVIC_InitStructure);
}

voidbsp_uart1_dmatx_config(uint8_t*mem_addr,uint32_tmem_size)
{
DMA_InitTypeDefDMA_InitStructure;

DMA_DeInit(DMA1_Channel2);
DMA_Cmd(DMA1_Channel2,DISABLE);
DMA_InitStructure.DMA_PeripheralBaseAddr=(uint32_t)&(USART1->TDR);
DMA_InitStructure.DMA_MemoryBaseAddr=(uint32_t)mem_addr;
DMA_InitStructure.DMA_DIR=DMA_DIR_PeripheralDST;/*傳輸方向:內存->外設*/
DMA_InitStructure.DMA_BufferSize=mem_size;
DMA_InitStructure.DMA_PeripheralInc=DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc=DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize=DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryDataSize=DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_Mode=DMA_Mode_Normal;
DMA_InitStructure.DMA_Priority=DMA_Priority_High;
DMA_InitStructure.DMA_M2M=DMA_M2M_Disable;
DMA_Init(DMA1_Channel2,&DMA_InitStructure);
DMA_ITConfig(DMA1_Channel2,DMA_IT_TC|DMA_IT_TE,ENABLE);
DMA_ClearFlag(DMA1_IT_TC2);/*清除發送完成標識*/
DMA_Cmd(DMA1_Channel2,ENABLE);
}

voidbsp_uart1_dmarx_config(uint8_t*mem_addr,uint32_tmem_size)
{
DMA_InitTypeDefDMA_InitStructure;

DMA_DeInit(DMA1_Channel3);
DMA_Cmd(DMA1_Channel3,DISABLE);
DMA_InitStructure.DMA_PeripheralBaseAddr=(uint32_t)&(USART1->RDR);
DMA_InitStructure.DMA_MemoryBaseAddr=(uint32_t)mem_addr;
DMA_InitStructure.DMA_DIR=DMA_DIR_PeripheralSRC;/*傳輸方向:外設->內存*/
DMA_InitStructure.DMA_BufferSize=mem_size;
DMA_InitStructure.DMA_PeripheralInc=DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc=DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize=DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryDataSize=DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_Mode=DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority=DMA_Priority_VeryHigh;
DMA_InitStructure.DMA_M2M=DMA_M2M_Disable;
DMA_Init(DMA1_Channel3,&DMA_InitStructure);
DMA_ITConfig(DMA1_Channel3,DMA_IT_TC|DMA_IT_HT|DMA_IT_TE,ENABLE);/*使能DMA半滿、全滿、錯誤中斷*/
DMA_ClearFlag(DMA1_IT_TC3);
DMA_ClearFlag(DMA1_IT_HT3);
DMA_Cmd(DMA1_Channel3,ENABLE);
}

uint16_tbsp_uart1_get_dmarx_buf_remain_size(void)
{
returnDMA_GetCurrDataCounter(DMA1_Channel3);/*獲取DMA接收buf剩余空間*/
}

voidbsp_uart2_dmatx_config(uint8_t*mem_addr,uint32_tmem_size)
{
DMA_InitTypeDefDMA_InitStructure;

DMA_DeInit(DMA1_Channel4);
DMA_Cmd(DMA1_Channel4,DISABLE);
DMA_InitStructure.DMA_PeripheralBaseAddr=(uint32_t)&(USART2->TDR);
DMA_InitStructure.DMA_MemoryBaseAddr=(uint32_t)mem_addr;
DMA_InitStructure.DMA_DIR=DMA_DIR_PeripheralDST;/*傳輸方向:內存->外設*/
DMA_InitStructure.DMA_BufferSize=mem_size;
DMA_InitStructure.DMA_PeripheralInc=DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc=DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize=DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryDataSize=DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_Mode=DMA_Mode_Normal;
DMA_InitStructure.DMA_Priority=DMA_Priority_High;
DMA_InitStructure.DMA_M2M=DMA_M2M_Disable;
DMA_Init(DMA1_Channel4,&DMA_InitStructure);
DMA_ITConfig(DMA1_Channel4,DMA_IT_TC|DMA_IT_TE,ENABLE);
DMA_ClearFlag(DMA1_IT_TC4);/*清除發送完成標識*/
DMA_Cmd(DMA1_Channel4,ENABLE);
}

voidbsp_uart2_dmarx_config(uint8_t*mem_addr,uint32_tmem_size)
{
DMA_InitTypeDefDMA_InitStructure;

DMA_DeInit(DMA1_Channel5);
DMA_Cmd(DMA1_Channel5,DISABLE);
DMA_InitStructure.DMA_PeripheralBaseAddr=(uint32_t)&(USART2->RDR);
DMA_InitStructure.DMA_MemoryBaseAddr=(uint32_t)mem_addr;
DMA_InitStructure.DMA_DIR=DMA_DIR_PeripheralSRC;/*傳輸方向:外設->內存*/
DMA_InitStructure.DMA_BufferSize=mem_size;
DMA_InitStructure.DMA_PeripheralInc=DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc=DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize=DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryDataSize=DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_Mode=DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority=DMA_Priority_VeryHigh;
DMA_InitStructure.DMA_M2M=DMA_M2M_Disable;
DMA_Init(DMA1_Channel5,&DMA_InitStructure);
DMA_ITConfig(DMA1_Channel5,DMA_IT_TC|DMA_IT_HT|DMA_IT_TE,ENABLE);/*使能DMA半滿、全滿、錯誤中斷*/
DMA_ClearFlag(DMA1_IT_TC5);
DMA_ClearFlag(DMA1_IT_HT5);
DMA_Cmd(DMA1_Channel5,ENABLE);
}

uint16_tbsp_uart2_get_dmarx_buf_remain_size(void)
{
returnDMA_GetCurrDataCounter(DMA1_Channel5);/*獲取DMA接收buf剩余空間*/
}

壓力測試:

  • 1.5Mbps波特率,串口助手每毫秒發送1k字節數據,stm32f0 DMA接收數據,再通過DMA發送回串口助手,毫無壓力。
  • 1.5Mbps波特率,可傳輸大文件測試,將接收數據保存為文件,與源文件比較。
  • 串口高波特率測試需要USB轉TLL工具及串口助手都支持才可行,推薦CP2102、FT232芯片的USB轉TTL工具。
381f1d62-3f8c-11ed-9e49-dac502259ad0.png1.5Mbps串口回環壓力測試

審核編輯 :李倩


聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 源碼
    +關注

    關注

    8

    文章

    671

    瀏覽量

    30321
  • dma
    dma
    +關注

    關注

    3

    文章

    576

    瀏覽量

    103198

原文標題:8 完整源碼

文章出處:【微信號:zhuyandz,微信公眾號:FPGA之家】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    第七章 串口通信

    本章介紹了W55MH32的串口通信,講述了數據通信基礎概念、串口通信協議和特性與功能,以及DMA串口中用于高速數據傳輸場景,并進行了多種模式的程序設計與下載驗證。
    的頭像 發表于 05-26 17:00 ?350次閱讀
    第七章 <b class='flag-5'>串口</b>通信

    為什么在“PWM Adc Dma 344 S32CT”示例中使用ISR塊來讀取dma adc通道?

    DMA 模式的 ADC1組的數據,它使用硬件中斷塊作為墻,就像在中斷模式下配置的 ADC2組一樣。 我的問題是為什么使用這個塊,以及是否必要讀取 ADC1組的值。盡管在 DMA
    發表于 04-08 06:39

    家用網線必要買屏蔽的嗎

    家用網線是否必要買屏蔽的,取決于您的家庭網絡環境、預算以及對網絡穩定性和安全性的需求。以下從多角度為您分析: 一、屏蔽網線的作用 屏蔽網線通過內部的金屬屏蔽層(如鋁箔或金屬編織網),能有效抵抗外部
    的頭像 發表于 04-02 10:33 ?922次閱讀

    stm32 DMA串口接收到數組,數組元素順序錯亂怎么解決?

    配置DMA循環模式,使用HAL_UART_Receive_DMA(&huart1,buffer,4)函數將串口數據循環發送到4個元素的buffer數組內,上位機20ms發送一次
    發表于 03-12 08:02

    STM32H743 UART DMA接收不到數據,為什么?

    failed!\\n\", \"uart3\"); return RT_ERROR; } /* 以 DMA 接收及輪詢發送方式打開串口設備
    發表于 02-19 06:14

    CKS32F107xx系列的DMA控制器簡介

    直接存儲器存取(DMA)用來提供在外設和存儲器之間或者存儲器和存儲器之間的高速數據傳輸。無須CPU干預,數據可以通過DMA快速地移動,這就節省了CPU的資源來做其他操作。兩個DMA控制器
    的頭像 發表于 02-18 17:24 ?893次閱讀
    CKS32F107xx系列的<b class='flag-5'>DMA</b>控制器簡介

    ZYNQ基礎---AXI DMA使用

    Xilinx官方也提供一些DMA的IP,通過調用API函數能夠更加靈活地使用DMA。 1. AXI DMA的基本接口 axi dma IP
    的頭像 發表于 01-06 11:13 ?2305次閱讀
    ZYNQ基礎---AXI <b class='flag-5'>DMA</b>使用

    串口通信的開發環境配置

    串口通信的開發環境配置涉及多個方面,包括選擇編程語言、安裝必要的庫或驅動程序、配置串口參數等。以下是一個基于Python的串口通信開發環境配置的步驟: 一、硬件準備 確保你
    的頭像 發表于 11-22 09:21 ?926次閱讀

    雅特力AT32F402/F405 DMA使用指南

    通道都支持外設的DMA請求映射到任意通道上。圖1.DMA控制器架構DMAMUX簡介對于如何將外設的DMA請求映射到任意的數據流通道上,就需要使用到DMAMUX。DM
    的頭像 發表于 11-20 01:03 ?1001次閱讀
    雅特力AT32F402/F405 <b class='flag-5'>DMA</b>使用指南

    為什么通信要使用虛擬串口串口助手?

    串口助手和虛擬串口是什么?串口助手和虛擬串口串口通信中很常見。串口助手是用于
    的頭像 發表于 11-15 01:04 ?3765次閱讀
    為什么通信<b class='flag-5'>要使</b>用虛擬<b class='flag-5'>串口</b>和<b class='flag-5'>串口</b>助手?

    DMA是什么?詳細介紹

    DMA(Direct Memory Access)是一種允許某些硬件子系統直接訪問系統內存的技術,而無需中央處理單元(CPU)的介入。這種技術可以顯著提高數據傳輸速率,減輕CPU的負擔,并提高整體
    的頭像 發表于 11-11 10:49 ?1.9w次閱讀

    用于ADC的DMA乒乓

    電子發燒友網站提供《用于ADC的DMA乒乓.pdf》資料免費下載
    發表于 09-07 11:27 ?1次下載
    用于ADC的<b class='flag-5'>DMA</b>乒乓

    高頻逆變器變壓器必要線屏蔽嗎

    必要。高頻逆變器變壓器的屏蔽問題是一個非常重要的話題。 一、屏蔽的必要性 1.1 高頻電磁干擾的危害 在現代電子設備中,高頻逆變器是一種常見的電源轉換設備,它將直流電轉換為交流電,以滿足各種
    的頭像 發表于 08-15 15:16 ?907次閱讀

    揭秘車載VCU項目之外掛界的“大哥”DMA

    引腳配置此實例選擇CAN0進行配置。三、外設配置對于DMA,其采用的固定映射,對于通道0至通道15,其映射一部分外設,通道16至通道31映射一部分外設,所以對于外設要使DMA,也需要注意此項。添加外設:CAN基礎配置:CAN的
    的頭像 發表于 07-30 08:11 ?1363次閱讀
    揭秘車載VCU項目之外掛界的“大哥”<b class='flag-5'>DMA</b>

    經驗分享 | DMA助力實時控制

    直接存儲器訪問(DMA,DirectMemoryAccess)的優點·提高系統效率:通過繞過CPU,DMA顯著減少了數據傳輸對CPU資源的占用,使得CPU能夠專注于其他計算任務,提升了系統整體
    的頭像 發表于 07-18 08:18 ?1435次閱讀
    經驗分享 | <b class='flag-5'>DMA</b>助力實時控制