女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

CNN的三種可視化方法介紹

智能感知與物聯(lián)網(wǎng)技術(shù)研究所 ? 來源:通信信號處理研究所 ? 作者:通信信號處理研究 ? 2020-12-29 11:49 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

導(dǎo)讀

神經(jīng)網(wǎng)絡(luò)進(jìn)行可視化分析不管是在學(xué)習(xí)上還是實際應(yīng)用上都有很重要的意義,基于此,本文介紹了3種CNN的可視化方法:可視化中間特征圖,可視化卷積核,可視化圖像中類激活的熱力圖。每種方法均附有相關(guān)代碼詳解。

引言

有一些同學(xué)認(rèn)為深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)什么的就是一個黑盒子,沒辦法、也不需要分析其內(nèi)部的工作方式。個人認(rèn)為這種說法“謬之千里”。

首先,站在自動特征提取或表示學(xué)習(xí)的角度來看,深度學(xué)習(xí)還是很好理解,即通過一個層級結(jié)構(gòu),由簡單到復(fù)雜逐步提取特征,獲得易于處理的高層次抽象表示。其次,現(xiàn)在也已經(jīng)有很多方法對神經(jīng)網(wǎng)絡(luò)進(jìn)行分析了,特別是一些可視化方法,可以很直觀的展示深度模型的特征提取過程。

對神經(jīng)網(wǎng)絡(luò)進(jìn)行可視化分析不管是在學(xué)習(xí)上還是實際應(yīng)用上都有很重要的意義,基于此,本文將介紹以下3種CNN的可視化方法:

可視化中間特征圖。

可視化卷積核。

可視化圖像中類激活的熱力圖。

可視化中間特征圖

這種方法很簡單,把網(wǎng)絡(luò)中間某層的輸出的特征圖按通道作為圖片進(jìn)行可視化展示即可,如下述代碼所示:

import matplotlib.pyplot as plt
#get feature map of layer_activation
plt.matshow(layer_activation[0, :, :, 4], cmap='viridis')

把多個特征圖可視化后堆疊在一起可以得到與下述類似的圖片。

上圖為某CNN 5-8 層輸出的某喵星人的特征圖的可視化結(jié)果(一個卷積核對應(yīng)一個小圖片)。可以發(fā)現(xiàn)越是低的層,捕捉的底層次像素信息越多,特征圖中貓的輪廓也越清晰。越到高層,圖像越抽象,稀疏程度也越高。這符合我們一直強調(diào)的特征提取概念。

可視化卷積核

想要觀察卷積神經(jīng)網(wǎng)絡(luò)學(xué)到的過濾器,一種簡單的方法是獲取每個過濾器所響應(yīng)的視覺模式。我們可以將其視為一個優(yōu)化問題,即從空白輸入圖像開始,將梯度上升應(yīng)用于卷積神經(jīng)網(wǎng)絡(luò)的輸入圖像,讓某個過濾器的響應(yīng)最大化,最后得到的圖像是選定過濾器具有較大響應(yīng)的圖像。

核心代碼如下所示(利用Keras框架):

def generate_pattern(layer_name, filter_index, size=150):
layer_output = model.get_layer(layer_name).output
loss = K.mean(layer_output[:, :, :, filter_index])
grads = K.gradients(loss, model.input)[0]
grads /= (K.sqrt(K.mean(K.square(grads))) + 1e-5)
iterate = K.function([model.input], [loss, grads])

input_img_data = np.random.random((1, size, size, 3)) * 20 + 128.
step = 1.
for i in range(40):
loss_value, grads_value = iterate([input_img_data])
input_img_data += grads_value * step

img = input_img_data[0]
return deprocess_image(img)

將輸入圖片張量轉(zhuǎn)換回圖片后進(jìn)行可視化,可以得到與下述類似的圖片:

block1_conv1 層的過濾器模式

隨著層數(shù)的加深,卷積神經(jīng)網(wǎng)絡(luò)中的過濾器變得越來越復(fù)雜,越來越精細(xì)。模型第一層( block1_conv1 )的過濾器對應(yīng)簡單的方向邊緣和顏色,高層的過濾器類似于自然圖像中的紋理:羽毛、眼睛、樹葉等。

可視化圖像中類激活的熱力圖

即顯示原始圖片的不同區(qū)域?qū)δ硞€CNN輸出類別的“貢獻(xiàn)”程度。

可以看到,大象頭部對“大象”這個類別的“貢獻(xiàn)”程度較高,而且這種方法似乎可以在一定程度上進(jìn)行無監(jiān)督的目標(biāo)檢測。

下面是書中原文,可能有點繞口。

我們將使用的具體實現(xiàn)方式是“Grad-CAM: visual explanations from deep networks via gradient-based localization”這篇論文中描述的方法。這種方法非常簡單:給定一張輸入圖像,對于一個卷積層的輸出特征圖,用類別相對于通道的梯度對這個特征圖中的每個通道進(jìn)行加權(quán)。直觀上來看,理解這個技巧的一種方法是,你是用“每個通道對類別的重要程度”對“輸入圖像對不同通道的激活強度”的空間圖進(jìn)行加權(quán),從而得到了“輸入圖像對類別的激活強度”的空間圖。

這里談一下我的理解,給定線性函數(shù) ,y為類別, 等等為輸入。可以看到這里 對y的貢獻(xiàn)為 ,恰好為 。當(dāng)然了,深度模型中有非線性激活函數(shù),不能簡化為一個線性模型,所以這只是啟發(fā)性的理解。

代碼如下所示:

african_elephant_output = model.output[:, 386]
last_conv_layer = model.get_layer('block5_conv3')
grads = K.gradients(african_elephant_output, last_conv_layer.output)[0]
pooled_grads = K.mean(grads, axis=(0, 1, 2))
iterate = K.function([model.input],
[pooled_grads, last_conv_layer.output[0]])
pooled_grads_value, conv_layer_output_value = iterate([x])
for i in range(512):
conv_layer_output_value[:, :, i] *= pooled_grads_value[i]
heatmap = np.mean(conv_layer_output_value, axis=-1)
heatmap = np.maximum(heatmap, 0)
heatmap /= np.max(heatmap)
plt.matshow(heatmap)

得到的熱力圖如下所示:

經(jīng)下述代碼處理后,可以得到本節(jié)開始時的圖片。

import cv2
img = cv2.imread(img_path)
heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))
heatmap = np.uint8(255 * heatmap)
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
superimposed_img = heatmap * 0.4 + img
cv2.imwrite('/Users/fchollet/Downloads/elephant_cam.jpg', superimposed_img)

原文標(biāo)題:CNN的一些可視化方法!

文章出處:【微信公眾號:通信信號處理研究所】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

責(zé)任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

原文標(biāo)題:CNN的一些可視化方法!

文章出處:【微信號:tyutcsplab,微信公眾號:智能感知與物聯(lián)網(wǎng)技術(shù)研究所】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    可視化組態(tài)物聯(lián)網(wǎng)平臺是什么

    可視化組態(tài)物聯(lián)網(wǎng)平臺是物聯(lián)網(wǎng)技術(shù)與組態(tài)技術(shù)相結(jié)合的產(chǎn)物,是通過提供豐富的圖形組件和可視化元素,讓用戶能夠以直觀、便捷的方式對物聯(lián)網(wǎng)數(shù)據(jù)進(jìn)行監(jiān)控、分析和管理的平臺。以下是其具體介紹
    的頭像 發(fā)表于 04-21 10:40 ?288次閱讀

    VirtualLab Fusion應(yīng)用:光學(xué)系統(tǒng)的3D可視化

    摘要 為了從根本上了解光學(xué)系統(tǒng)的特性,對其組件進(jìn)行可視化并顯示光的傳播情況大有幫助。為此,VirtualLab Fusion 提供了顯示光學(xué)系統(tǒng)可視化的工具。這些工具還可用于檢查元件和探測器
    發(fā)表于 04-02 08:42

    VirtualLab Fusion中的可視化設(shè)置

    摘要 VirtualLab Fusion中的全局選項對話框可以輕松定制軟件的外觀和感覺。還可以保存和加載全局選項文件,以便可以輕松地將偏好設(shè)置從一個設(shè)備轉(zhuǎn)移到另一個設(shè)備。本文檔說明了與可視化和結(jié)果
    發(fā)表于 02-25 08:51

    VirtualLab Fusion應(yīng)用:光波導(dǎo)k域布局可視化(“神奇的圓環(huán)”)

    ,光可以在TIR(全反射)作用下傳播,并與光導(dǎo)表面上不同類型的光柵結(jié)構(gòu)相結(jié)合,以耦合光進(jìn)出。在VirtualLab Fusion中,k-Layout可視化工具提供了一在k域中強大的圖解方法,用于分析
    發(fā)表于 02-21 08:53

    七款經(jīng)久不衰的數(shù)據(jù)可視化工具!

    數(shù)據(jù)量的激增,單純通過數(shù)字和文本來分析數(shù)據(jù)已不再高效。數(shù)據(jù)可視化則提供了一直觀、互動性強的方式,幫助人們通過視覺元素,如柱狀圖、折線圖、餅圖、熱力圖等圖表形式,理解復(fù)雜的數(shù)據(jù)關(guān)系。 二、數(shù)據(jù)可視化
    發(fā)表于 01-19 15:24

    光學(xué)系統(tǒng)的3D可視化

    **摘要 ** 為了從根本上了解光學(xué)系統(tǒng)的特性,對其組件進(jìn)行可視化并顯示光的傳播情況大有幫助。為此,VirtualLab Fusion 提供了顯示光學(xué)系統(tǒng)可視化的工具。這些工具還可用于檢查元件
    發(fā)表于 01-06 08:53

    什么是大屏數(shù)據(jù)可視化?特點有哪些?

    介紹: 特點 直觀易懂:大屏數(shù)據(jù)可視化通過圖表、圖形和其他可視化元素,將復(fù)雜的數(shù)據(jù)轉(zhuǎn)化為直觀易懂的形式,使得用戶無需深入挖掘數(shù)據(jù)細(xì)節(jié)即可快速理解數(shù)據(jù)的含義。例如,企業(yè)可以將復(fù)雜的數(shù)據(jù)轉(zhuǎn)化為易于理解的圖表和圖形,使
    的頭像 發(fā)表于 12-16 16:59 ?678次閱讀

    智慧能源可視化監(jiān)管平臺——助力可視化能源數(shù)據(jù)管理

    博達(dá)可視化大屏設(shè)計平臺在智慧能源領(lǐng)域的價值體現(xiàn)在實時監(jiān)控、數(shù)據(jù)可視化、決策支持和效率提升等方面。借助該平臺,企業(yè)可以輕松搭建智慧能源類可視化大屏,更加精確和高效地管理生產(chǎn)和生活,實現(xiàn)能源的可持續(xù)發(fā)展。
    的頭像 發(fā)表于 11-29 10:00 ?945次閱讀
    智慧能源<b class='flag-5'>可視化</b>監(jiān)管平臺——助力<b class='flag-5'>可視化</b>能源數(shù)據(jù)管理

    維激光掃描儀的數(shù)據(jù)可視化技術(shù)

    維激光掃描儀的數(shù)據(jù)可視化技術(shù)是將掃描儀獲取的大量維數(shù)據(jù)轉(zhuǎn)換成直觀、易于理解的圖形、圖像或動畫的過程。以下是對這一技術(shù)的介紹: 一、維激
    的頭像 發(fā)表于 11-28 10:15 ?820次閱讀

    智慧樓宇可視化的優(yōu)點

    智慧樓宇可視化是指通過數(shù)據(jù)可視化技術(shù)來展示和分析樓宇的各種數(shù)據(jù),為樓宇管理者和用戶提供直觀、清晰的信息展示和決策支持。以下是智慧樓宇可視化的優(yōu)點,詳細(xì)介紹其在樓宇管理和運營中的重要作用
    的頭像 發(fā)表于 11-19 14:25 ?478次閱讀

    數(shù)字孿生可視化場景如何搭建?

    數(shù)字孿生 可視化 場景是一強大的工具,能夠幫助我們模擬和展示現(xiàn)實世界中的復(fù)雜環(huán)境和系統(tǒng)。從數(shù)據(jù)采集到交互設(shè)計,通過一系列步驟,可以有效地搭建出逼真動態(tài)的數(shù)字孿生維場景。 數(shù)據(jù)采
    的頭像 發(fā)表于 11-06 14:40 ?591次閱讀

    可視化建筑建模特點

    可視化建筑建模是一利用計算機技術(shù)對建筑物進(jìn)行立體表達(dá)和展示的過程,是建筑設(shè)計和規(guī)劃中不可或缺的重要環(huán)節(jié)。在當(dāng)今數(shù)字化時代,
    的頭像 發(fā)表于 07-23 11:50 ?868次閱讀

    如何實現(xiàn)維地圖可視化交互系統(tǒng)

    維地圖可視化 交互系統(tǒng)是一基于維地圖技術(shù)的交互式應(yīng)用程序,可以呈現(xiàn)地理信息和空間數(shù)據(jù)的立體展示,并提供用戶友好的交互功能。以下是古河
    的頭像 發(fā)表于 07-19 18:20 ?2148次閱讀

    可視化運用的主要技術(shù)

    可視化技術(shù)是一強大的工具,可用于呈現(xiàn)復(fù)雜的數(shù)據(jù)和概念,使人們能夠更直觀地理解信息。在當(dāng)今數(shù)字化時代,可視化已經(jīng)成為許多領(lǐng)域中不可或
    的頭像 發(fā)表于 07-19 13:56 ?639次閱讀

    可視化的魅力與應(yīng)用

    可視化是一強大的工具,它融合了藝術(shù)、科學(xué)和技術(shù),通過在維空間中呈現(xiàn)數(shù)據(jù)、概念和想法,為人們提供了一直觀而生動的方式來理解和探索信息
    的頭像 發(fā)表于 07-17 14:19 ?550次閱讀