女人自慰AV免费观看内涵网,日韩国产剧情在线观看网址,神马电影网特片网,最新一级电影欧美,在线观看亚洲欧美日韩,黄色视频在线播放免费观看,ABO涨奶期羡澄,第一导航fulione,美女主播操b

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

視覺SLAM與激光SLAM有什么區別?

新機器視覺 ? 來源:slamtec ? 2020-08-28 14:53 ? 次閱讀

近年來,SLAM技術取得了驚人的發展,領先一步的激光SLAM已成熟的應用于各大場景中,視覺SLAM雖在落地應用上不及激光SLAM,但也是目前研究的一大熱點,今天我們就來詳細聊聊視覺SLAM的那些事兒。

視覺SLAM是什么?

視覺SLAM主要是基于相機來完成環境的感知工作,相對而言,相機成本較低,容易放到商品硬件上,且圖像信息豐富,因此視覺SLAM也備受關注。

目前,視覺SLAM可分為單目、雙目(多目)、RGBD這三類,另還有魚眼、全景等特殊相機,但目前在研究和產品中還屬于少數,此外,結合慣性測量器件(Inertial Measurement Unit,IMU)的視覺SLAM也是現在研究熱點之一。從實現難度上來說,大致將這三類方法排序為:單目視覺>雙目視覺>RGBD。

單目相機SLAM簡稱MonoSLAM,僅用一支攝像頭就能完成SLAM。最大的優點是傳感器簡單且成本低廉,但同時也有個大問題,就是不能確切的得到深度。

一方面是由于絕對深度未知,單目SLAM不能得到機器人運動軌跡及地圖的真實大小,如果把軌跡和房間同時放大兩倍,單目看到的像是一樣的,因此,單目SLAM只能估計一個相對深度。另一方面,單目相機無法依靠一張圖像獲得圖像中物體離自己的相對距離。為了估計這個相對深度,單目SLAM要靠運動中的三角測量,來求解相機運動并估計像素的空間位置。即是說,它的軌跡和地圖,只有在相機運動之后才能收斂,如果相機不進行運動時,就無法得知像素的位置。同時,相機運動還不能是純粹的旋轉,這就給單目SLAM的應用帶來了一些麻煩。

而雙目相機與單目不同的是,立體視覺既可以在運動時估計深度,亦可在靜止時估計,消除了單目視覺的許多麻煩。不過,雙目或多目相機配置與標定均較為復雜,其深度量程也隨雙目的基線與分辨率限制。通過雙目圖像計算像素距離,是一件非常消耗計算量的事情,現在多用FPGA來完成。

RGBD相機是2010年左右開始興起的一種相機,它最大的特點是可以通過紅外結構光或TOF原理,直接測出圖像中各像素離相機的距離。因此,它比傳統相機能夠提供更豐富的信息,也不必像單目或雙目那樣費時費力地計算深度。

視覺SLAM框架解讀

1.傳感器數據

在視覺SLAM中主要為相機圖像信息的讀取和預處理。如果在機器人中,還可能有碼盤,慣性傳感器等信息的讀取和同步。

2.視覺里程計

視覺里程計的主要任務是估算相鄰圖像間相機運動以及局部地圖的樣子,最簡單的是兩張圖像之間的運動關系。計算機是如何通過圖像確定相機的運動的。在圖像上,我們只能看到一個個的像素,知道他們是某些空間點在相機的成像平面投影的結果。所以必須先了解相機跟空間點的幾何關系。

Vo(又稱為前端)能夠通過相鄰幀間的圖像估計相機運動,并恢復場景的空間結構,稱它為里程計。被稱為里程計是因為它只計算相鄰時刻的運動,而和再往前的過去信息沒有關聯。相鄰時刻運動串聯起來,就構成了機器人的運動軌跡,從而解決了定位問題。另一方面,根據每一時刻的相機位置,計算出各像素對應的空間點的位置,就得到了地圖。

3.后端優化

后端優化主要是處理slam過程中噪聲的問題。任何傳感器都有噪聲,所以除了要處理“如何從圖像中估計出相機運動”,還要關心這個估計帶有多大的噪聲。

前端給后端提供待優化的數據,以及這些數據的初始值,而后端負責整體的優化過程,它往往面對的只有數據,不必關系這些數據來自哪里。在視覺slam中,前端和計算接視覺研究領域更為相關,比如圖像的特征提取與匹配等,后端則主要是濾波和非線性優化算法

4.回環檢測

回環檢測也可以稱為閉環檢測,是指機器人識別曾到達場景的能力。如果檢測成功,可以顯著地減小累積誤差。回環檢測實質上是一種檢測觀測數據相似性的算法。對于視覺SLAM,多數系統采用目前較為成熟的詞袋模型(Bag-of-Words, BoW)。詞袋模型把圖像中的視覺特征(SIFT, SURF等)聚類,然后建立詞典,進而尋找每個圖中含有哪些“單詞”(word)。也有研究者使用傳統模式識別的方法,把回環檢測建構成一個分類問題,訓練分類器進行分類。

5.建圖

建圖主要是根據估計的軌跡建立與任務要求對應的地圖,在機器人學中,地圖的表示主要有柵格地圖、直接表征法、拓撲地圖以及特征點地圖這4種。而特征點地圖是用有關的幾何特征(如點、直線、面)表示環境,常見于視覺SLAM技術中。這種地圖一般通過如GPS、UWB以及攝像頭配合稀疏方式的vSLAM算法產生,優點是相對數據存儲量和運算量比較小,多見于最早的SLAM算法中。

視覺SLAM工作原理

大多數視覺SLAM系統的工作方式是通過連續的相機幀,跟蹤設置關鍵點,以三角算法定位其3D位置,同時使用此信息來逼近推測相機自己的姿態。簡單來說,這些系統的目標是繪制與自身位置相關的環境地圖。這個地圖可以用于機器人系統在該環境中導航作用。與其他形式的SLAM技術不同,只需一個3D視覺攝像頭,就可以做到這一點。

通過跟蹤攝像頭視頻幀中足夠數量的關鍵點,可以快速了解傳感器的方向和周圍物理環境的結構。所有視覺SLAM系統都在不斷的工作,以使重新投影誤差(Reprojection Error)或投影點與實際點之間的差異最小化,通常是通過一種稱為Bundle Adjustment(BA)的算法解決方案。vSLAM系統需要實時操作,這涉及到大量的運算,因此位置數據和映射數據經常分別進行Bundle Adjustment,但同時進行,便于在最終合并之前加快處理速度。

視覺SLAM與激光SLAM有什么區別?

在業內,視覺SLAM與激光SLAM誰更勝一籌,誰將成為未來主流趨勢這一問題,成為大家關注的熱點,不同的人也有不同的看法及見解,以下將從成本、應用場景、地圖精度、易用性幾個方面來進行詳細闡述。

1.成本

從成本上來說,激光雷達普遍價格較高,但目前國內也有低成本的激光雷達解決方案,而VSLAM主要是通過攝像頭來采集數據信息,跟激光雷達一對比,攝像頭的成本顯然要低很多。但激光雷達能更高精度的測出障礙點的角度和距離,方便定位導航。

2.應用場景

從應用場景來說,VSLAM的應用場景要豐富很多。VSLAM在室內外環境下均能開展工作,但是對光的依賴程度高,在暗處或者一些無紋理區域是無法進行工作的。而激光SLAM目前主要被應用在室內,用來進行地圖構建和導航工作。

3.地圖精度

激光SLAM在構建地圖的時候,精度較高,思嵐科技的RPLIDAR系列構建的地圖精度可達到2cm左右;VSLAM,比如常見的,大家也用的非常多的深度攝像機Kinect,(測距范圍在3-12m之間),地圖構建精度約3cm;所以激光SLAM構建的地圖精度一般來說比VSLAM高,且能直接用于定位導航。

視覺SLAM的地圖建立

4.易用性

激光SLAM和基于深度相機的視覺SLAM均是通過直接獲取環境中的點云數據,根據生成的點云數據,測算哪里有障礙物以及障礙物的距離。但是基于單目、雙目、魚眼攝像機的視覺SLAM方案,則不能直接獲得環境中的點云,而是形成灰色或彩色圖像,需要通過不斷移動自身的位置,通過提取、匹配特征點,利用三角測距的方法測算出障礙物的距離。

總體來說,激光SLAM相對更為成熟,也是目前最為可靠的定位導航方案,而視覺SLAM仍是今后研究的一個主流方向,但未來,兩者融合是必然趨勢。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 激光
    +關注

    關注

    20

    文章

    3410

    瀏覽量

    65743
  • 測量器件
    +關注

    關注

    0

    文章

    9

    瀏覽量

    6756
  • 視覺SLAM
    +關注

    關注

    0

    文章

    9

    瀏覽量

    1429

原文標題:視覺SLAM技術解讀

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦
    熱點推薦

    什么是SLAM視覺SLAM怎么實現?

    上周的組會上,我給研一的萌新們講解什么是SLAM,為了能讓他們在沒有任何基礎的情況下大致聽懂,PPT只能多圖少字沒公式,這里我就把上周的組會匯報總結一下。 這次匯報的題目我定為“視覺SLAM:一直在
    的頭像 發表于 08-21 10:02 ?1.2w次閱讀
    什么是<b class='flag-5'>SLAM</b>?<b class='flag-5'>視覺</b><b class='flag-5'>SLAM</b>怎么實現?

    SLAM技術的應用及發展現狀

    也將SLAM分為激光SLAM視覺SLAM激光SLAM
    發表于 12-06 10:25

    視覺SLAM筆記總結

    【總結】視覺SLAM筆記整理
    發表于 07-17 14:05

    激光SLAM視覺SLAM什么區別

    機器人定位導航中,目前主要涉及到激光SLAM視覺SLAM激光SLAM在理論、技術和產品落地上
    發表于 07-05 06:41

    基于視覺slam自動駕駛

    基于視覺slam自動駕駛,這是我們測試的視頻《基于slam算法的智能機器人》調研分析報告項目背景分析機器人曾經是科幻電影中的形象,可目前已經漸漸走入我們的生活。機器人技術以包含機械、電子、自動控制
    發表于 08-09 09:37

    SLAM的相關知識點分享

    研究生期間進行了基于2D激光雷達的SLAM的研究,當時主要做了二維激光雷達的數據處理。小弟不才,沒有入得了SLAM的坑,卻一直謎之向往,如今得以機會,決定正式邁出第一步,徹底進入
    發表于 08-30 06:13

    激光SLAM視覺VSLAM的分析比較

    什么是激光SLAM視覺VSLAM又是什么?激光SLAM視覺VSLAM
    發表于 11-10 07:16

    視覺SLAM技術淺談

    和映射數據經常分別進行Bundle Adjustment,但同時進行,便于在最終合并之前加快處理速度。?視覺SLAM激光SLAM
    的頭像 發表于 08-09 17:31 ?1742次閱讀

    視覺SLAM深度解讀

    和映射數據經常分別進行Bundle Adjustment,但同時進行,便于在最終合并之前加快處理速度。?視覺SLAM激光SLAM
    的頭像 發表于 09-11 22:01 ?2079次閱讀

    激光SLAM視覺SLAM必將融合 移動機器人核心技術將不斷升級

    近年來,伴隨移動機器人在各行各業的廣泛應用,SLAM這個“名字”逐漸被更多的人所熟悉,但是SLAM具體是什么、SLAM哪些應用領域、激光
    發表于 01-18 17:43 ?3484次閱讀

    科普|視覺SLAM是什么——三種視覺SLAM方案

    如今科技發展日新月異,諸如機器人、AR/VR等前沿科技產品已走入了大眾生活當中。但是想在這些領域讓用戶更好的體驗,就需要很多底層技術的支持,SLAM就是其中之一。如果說機器人離開了SLAM
    的頭像 發表于 04-17 09:21 ?5.6w次閱讀

    機器人主流定位技術:激光SLAM視覺SLAM誰更勝一籌

    定位技術是機器人實現自主定位導航的最基本環節,是機器人在二維工作環境中相對于全局坐標的位置及其本身的姿態。目前SLAM (Simultaneous Localization and Mapping即時定位與地圖構建)是業內主流的定位技術,
    的頭像 發表于 12-26 10:59 ?2016次閱讀

    基于深度學習的視覺SLAM綜述

    SLAM本質上是一個狀態估計問題,根據傳感器做劃分,主要是激光視覺兩大類。激光SLAM的研究在理論和工程上都比較成熟,現有的很多行業已經開
    的頭像 發表于 12-02 15:00 ?2492次閱讀

    視覺SLAM開源方案匯總 視覺SLAM設備選型

    SLAM至今已歷經三十多年的研究,這里給出經典視覺SLAM框架,這個框架本身及其包含的算法已經基本定型,并且已經在許多視覺程序庫和機器人程序庫中提供。
    發表于 08-10 14:15 ?1388次閱讀
    <b class='flag-5'>視覺</b><b class='flag-5'>SLAM</b>開源方案匯總 <b class='flag-5'>視覺</b><b class='flag-5'>SLAM</b>設備選型

    視覺SLAM是什么?視覺SLAM的工作原理 視覺SLAM框架解讀

    近年來,SLAM技術取得了驚人的發展,領先一步的激光SLAM已成熟的應用于各大場景中,視覺SLAM雖在落地應用上不及
    的頭像 發表于 09-05 09:31 ?4738次閱讀
    <b class='flag-5'>視覺</b><b class='flag-5'>SLAM</b>是什么?<b class='flag-5'>視覺</b><b class='flag-5'>SLAM</b>的工作原理 <b class='flag-5'>視覺</b><b class='flag-5'>SLAM</b>框架解讀