Gartner《2018年十大戰略技術趨勢:從云到邊緣》報告認為:到2022年,隨著數字業務的不斷發展,75%的企業生成數據將會在傳統的集中式數據中心或云端之外的位置創建并得到處理。
隨著工業物聯網的發展,必然會出現更多的本地就近控制和現場數據,面對這些逐漸增多的現場數據,該如何處理才能在保證其有效性的同時又減少云計算的壓力?
工業世界任何微小的提升都會帶來很大的優勢;工業世界任何微小的故障也可能帶來很大的損失——工業現場的很多數據“保鮮期”很短,一旦處理延誤,就會迅速“變質”,數據價值呈斷崖式跌落,工業現場的數據處理可以稱之為“走鋼絲”。此時,“邊緣計算”便發揮了不可替代的作用。
如果把大腦比作云端,那么邊緣計算就是神經末梢,對簡單的刺激進行自處理并將處理的特征信息反饋給云端大腦。
盡管當前工業企業追求的核心問題是如何讓數據賦能生產,產生價值。但是也不能忽視該進程中困擾工業企業多年的普遍性問題,數據處理的前置關鍵環節——如何采集數據?對于任何工業企業來說,挖掘數據金礦的第一步都是采集數據,不談數據采集的大數據分析是空中樓閣,沒有數據的工業云平臺相當于無本之木。
在不同的工業生產過程中,由于自動化產品品牌眾多,工業接口多樣化、工業協議不統一,所以看似簡單的數據采集并沒有那么容易。
除了數據采集,在數據處理運用方面,由于工業現場的數據面臨著“保鮮期”很短,以及大量“垃圾”數據并不需要傳遞到云端的問題。
雖然從產業角度來看,邊緣計算發展如火如荼,但從應用角度來看,它還處于落地的前期。邊緣計算與云計算的融合才能真正體現工業數據的價值。
實際上,產業界已經認識到邊云協同的重要性,并開展了積極的探索。例如,華為在其HC2018大會發布的智能邊緣平臺IEF明確提出了邊緣與云協同的一體化服務概念;西門子2018年發布了Industrial Edge的概念,大致理念是通過云端部署IndustrialEdge Management實現邊緣計算與云計算的協同,映翰通網絡在今年的漢諾威工業博覽會上,以邊緣計算網關為基礎,展示了“映翰通設備工業云(InHand DeviceNetworks Cloud)+邊緣計算網關(Edge Computing Gateway)”,實現邊云協同。
既然邊云協同對工業數據如此重要,那么怎么理解邊云協同呢?邊云協同處理數據的關鍵在于數據的融合。
在工業場景中,一方面通過邊緣計算直接運行實時分析算法,另一方面則利用邊緣與云的協同,實現模型不斷成長和優化,從而讓邊緣分析技術增強了平臺實時分析能力。當然,邊云協同的能力與內涵落地到各應用場景時其具體能力與關注點又會有所不同,因為每種邊緣計算業務形態對于與云計算協同的業務需求不盡相同。
比如,在柔性制造的過程中,現代工業機器人的應用越來越廣泛。生產線上的機器人、機械臂的穩定可靠性對企業生產的經濟效益保證意義重大。工業機器人的大規模部署,工業機器人結構復雜、維護成本高對生產企業技術人員的維護能力提出了極高要求。主要體現在,要在機器人發生故障之前檢測到機器人機構部件、控制裝置等方面的異常,并提醒用戶在停機發生前進行有針對的維護維修,從而使停機時間減少為零,實現連續生產。
這里的核心點在于通過邊云協同進行預防性維護,實現持續有效的生產。
在云端,設備云可以匯集工業現場實時生產數據進行集中存儲、分析、處理、預測,從網絡管理、現場探接再到感知與響應,可以大大提高運營和維護效率。
-
云計算
+關注
關注
39文章
7976瀏覽量
140026 -
工業物聯網
+關注
關注
25文章
2444瀏覽量
66219
原文標題:“人工智能之父”艾倫·圖靈登上英國50英鎊新鈔
文章出處:【微信號:AItists,微信公眾號:人工智能學家】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
為什么選擇一體化超聲波清洗機?它能給您帶來什么樣的好處?

電機群網絡管控一體化PLC-SCADA設計及應用
如祺出行入選智能網聯車路云一體化典型案例
華為入選中國云網安一體化能力領導者
德晟達助力解決車路云一體化發展難題
中偉視界:AI邊端云一體化平臺的智能化全流程解析
ARMxy ARM物聯網邊緣計算網關支持Node-RED用于云邊端一體化

評論