移相全橋ZVS變換器的原理與設計摘要:介紹移相全橋ZVS變換器的原理,并用UC3875控制器研制成功3kW移相全橋零電壓高頻通信開關電源。 關鍵詞:移相全橋零電流開關零電壓開關準諧振 The Principle and Design of Phase? shifted Full? bridge Zero? voltage Convertor Abstract: The paper introduces the principle of phase? shifted full? bridge zero? voltage? switching convertor.A 3kw full? bridge ZVS convertor was developed using UC3875 controller. Keywords: Phase? shifted full? bridge, ZCS, ZVS, Quasi? resonance 中圖法分類號:TN86文獻標識碼:A文章編號:0219?2713(2000)11?572?03 1引言 傳統的全橋PWM變換器適用于輸出低電壓(例如5V)、大功率(例如1kW)的情況,以及電源電壓和負載電流變化大的場合。其特點是開關頻率固定,便于控制。為了提高變換器的功率密度,減少單位輸出功率的體積和重量,需要將開關頻率提高到1MHz級水平。為避免開關過程中的損耗隨頻率增加而急劇上升,在移相控制技術的基礎上,利用功率MOS管的輸出電容和輸出變壓器的漏電感作為諧振元件,使全橋PWM變換器四個開關管依次在零電壓下導通,實現恒頻軟開關,這種技術稱為ZVS零電壓準諧振技術。由于減少了開關過程損耗,可保證整個變換器總體效率達90%以上,我們以Unitrode公司UC3875為控制芯片研制了零電壓準諧振高頻開關電源樣機。本文就研制過程,研制中出現的問題及其改進進行論述。 2準諧振開關電源的組成 ZVS準諧振高頻開關電源是一個完整的閉環系統,它包括主電路、控制電路及CPU通訊和保護電路,如圖1所示。 從圖1可以看出準諧振開關電源的組成與傳統PWM開關電源的結構極其相似,不同的是它在DC/DC變換電路中采用了軟開關技術,即準諧振變換器(QRC)。它是在PWM型開關變換器基礎上適當地加上諧振電感和諧振電容而形成的,由于運行中,工作在諧振狀態的時間只占開關周期的一部分,其余時間都是運行在非諧振狀態,所以稱為“準諧振”變換器。準揩振變換器又分為兩種,一種是零電流開關(ZCS),一種是零電壓開關(ZVS),零電流開關準諧振變換器的特點是保證運行中的開關管在斷開信號到來之前,管中電流下降到零。零電壓開關準諧振的特點是保證運行中的開關管在開通信號到來之前,管子兩端的電壓已經下降到零。 3零電壓準諧振變換器的工作原理 全橋零電壓準諧振變換器的主電路如圖2所示。Uin為PFC電路輸出的直流電壓(400V),S1~S4為功率開關管,其體二極管為D1~D4,圖中未畫出其體電容C1~C4,Lr為變壓器T1初級串聯諧振電感,(包括變壓器的漏感),C為防止變壓器因偏磁而飽和的隔直電容,T2為電流互感器,用于檢測。當變換器過流時,保護電路切斷驅動信號,保護功率器件。變壓器次級電壓經過D5、D6整流和輸出LC濾波器給負載供電。圖3給出了變壓器初級電壓UP、次級電壓US和初級電流ip的波形圖。ZVS變換器一周期內可分為六個運行模式,如表1所示。圖3中設t 圖13kW通信開關電源方框圖 圖2移相全橋ZVS變換器控制和輸出電路原理圖 圖3全橋ZVS?PWM變換器的主要波形 圖4移相PWM轉換器控制和驅動原理圖
4占空比分析 由波形圖可見,由于變換器存在漏電感,使初級電流在t1~t3階段,有一定斜率,因此次級電壓占空比(t4-t3)/(t4-t0)小于初級電壓占空比(t4-t1)/(t4-t0),造成占空比損失。開關頻率越高,占空比損失越大。 5移相全橋兩橋臂開關管實現ZVS的條件 由表1和圖3可以看出,S3和S4實現ZVS分別早于S1、S2,故稱S3、S4為右橋臂又稱超前橋臂,S1、S2為左橋臂又稱滯后臂。由表1可以看出S3、S4實現ZVS分別在(t0~t1)和(t4~t5),S2、S1實現ZVS分別在(t2~t3)和(t6~t7)。而(t2~t3)和(t6~t7)時變壓器初級電流分別小于(t0~t1)和(t4~t5)時的初級電流,故滯后橋臂比超前橋臂實現ZVS開關困難,特別是輕載時最為明顯。 從理論上分析,S1、S2實現ZVS開關時,變壓器次級處于續流階段,諧振時由諧振電感釋放能量,使諧振電容電壓下降到零,從而實現ZVS,此時實現ZVS條件為:電感能量必須大于所有參與諧振的電容能量。即 LrIp2/2>(4Coss/3+Cxfmr)×U2in 式中:4Coss/3是考慮MOS管輸出電容非線性等效電容值,Cxfmr是變壓器繞組的分布電容。由上式可見,滯后橋臂實現ZVS主要靠諧振電感儲能,輕載時能量不夠大,因此滯后橋臂不易滿足ZVS條件。 S3、S4實現ZVS開關時,變壓器處于能量傳遞階段。初級電流IP=-Io/n(n為變壓器變比),初級等效電感Le=Lr+n2LO。所以根據ZVS條件,電感能量必須大于所有參與諧振的電容能量,應有Le(Io/n)2/2>(4Coss/3+Cxfmr)Uin2。由于Le(Io/n)2/2相當大,故即使輕載時超前橋臂也較容易滿足ZVS條件。 6移相全橋PWM控制器 移相全橋PWM控制技術最關鍵的是器件的導通相位能在0~180°范圍內移動,若控制不好,特別是左橋臂或右橋臂的兩個開關管同時導通,將導致災難性的后果。Unitrode公司生產的UC3875能提供0~100%占空比的控制,并且有必要的保護、譯碼及驅動功能,有四組驅動輸出,每組的延時時間可控制,其控制電路如圖4所示。E/A+接固定的2?5V電壓(VREF=5V,R5、R9為10kΩ),作電壓給定信號。E/A-接對應的輸出電壓和EA+比較,從而控制OUTA~OUTD的相位,最終控制輸出電壓。C/S+接控制信號(如初級過流信號等),當初級過流時,C/S+大于2?5V,UC3875停止輸出驅動信號,從而將變換器輸出關閉,防止了災難事故的發生。驅動信號由OUTA~OUTD輸出,并經TC4420擴流,由驅動變壓器去驅動S1~S4MOS管,其延時時間由UC3875的7腳、15腳外接電阻確定,實際的驅動信號時序如圖5所示。 圖5驅動信號、變壓器次級信號波形圖 7結語 (1)換向死區時間的控制對實現零電壓開關很重要。 (2)UC3875控制電路的控制部分和輸出驅動部分供電電源應分開,否則移相時將引起頻率變化。 (3)為了在寬范圍內實現ZVS,要在變壓器初級串一個諧振電感,但諧振電感不能太大,電感太大會帶來占空比丟失,初級電流較大,導通損耗增大,電感發熱等問題,并且效率大大降低。 根據中國電信總局1999年底對所有入網通信電源效率的要求:所有大于1kW的通信電源,其效率(從半載到滿載)應大于90%。解決了諧振電感的發熱損耗問題,也就解決了效率問題。也可采用全橋ZVZCSPWM電路,使超前橋臂實現ZVS,滯后橋臂實現ZCS,便可克服全橋ZVS的缺點,效率可達93%以上。 參考文獻 1 Bill Andreycaf.Phase Shifted Zero Voltage Transition Design Considerations and the UC3875 PWM Controller.Product Applicacation Handbook,1995~ 1996 2張占松,蔡宣山.開關電源原理與設計 |
移相全橋ZVS變換器的原理與設計
- ZVS變換器(5333)
相關推薦
一文看懂移相全橋的原理及設計
本文開始介紹了移相全橋的定義以及移相全橋的拓撲結構,其次闡述了十二種移相全橋的工作模態,最后介紹了移相全橋ZVS變換器的原理與設計。
2018-03-07 08:59:36
199242


8KW碳化硅全橋LLC解決方案
采用的三電平電路,用兩個600V的Mosfet串聯,來解決高母線電壓帶來的MOS管應力問題。 其次是高壓下的開關損耗很大,使得我們必須選擇軟開關的電路拓撲。LLC變換器可以在全負載范圍內實現ZVS,使
2018-10-17 16:55:50
ZVS全橋變換器ISL6752相關資料分享
概述:該ISL6752是INTERSIL公司生產的一款高性能,低引腳數的替代零電壓開關(ZVS)全橋PWM控制器。像Intersil的ISL6551,它實現ZVS操作,通過驅動上橋的FET在一個固定
2021-05-17 06:53:57
全橋移相方案推薦
需要用全橋移相做一個電路,以下是我的配置1. 開關頻率80KHZ,用PC40 EE70磁芯,輸出功率3KW,請問是否可行2. 副邊輸出540VDC,采用什么樣的整流方式好?考慮到電壓非常大,還有什么好的處理方式呢?
2019-01-03 11:31:25
移相全橋出現的炸機的問題
我最近用的一個移相全橋拓撲,主芯片UC3875,觸發驅動TPS2812,電路是穩定的這我可以確認(用了很多年了)。 現在做一個兩線AC380V輸入,DC65V輸出的電源,在空載調試時,上電片刻炸機
2019-01-15 09:42:30
移相全橋控制的問題
圖為阮新波的《全橋變換器的軟開關技術》,其中“3.5 整流二極管的換流情況”,在ip不能滿足副邊電流后,副邊的Lf強行續流,導致Dr2導通,進而導致變壓器被短路。但是我有兩個問題1. 此時變壓器已經
2018-12-18 10:37:46
移相控制下的雙路輸出降壓變換器不同的PCB布局對比分析
開關管Q1導通時的功率回路也將有助于提高EMI性能。圖 4:移相控制下的U型EMI性能圖 6:簡化的EMI濾波器圖 8:采用差模和共模濾波器的I型布局的EMI性能本文比較了移相控制下的雙路輸出降壓變換器兩種不同的PCB布局,可以看出,U型布局的EMI性能優于I型布局。
2020-10-21 12:46:33
BOOST升壓變換器的基本原理是什么
容實現這個功能,這種升壓變換器稱為電容充電泵;如果使用電感實現這個功能,這種升壓變換器稱為BOOST變換器。另外,也可以將直流電壓變為交流,然后使用高頻變壓器升壓,如反激、正激、推挽、半橋和全橋等電源結構...
2021-12-29 06:01:10
DC/DC變換器中輸出濾波器的比較
不能太小。2)第2類在這類變換器中,整流級電壓的頻率是開關頻率的2倍。而且,在移相控制全橋等典型變換器中,很容易實現軟開關,因此可以適當地提高開關頻率,從而大大減小濾波元件LC的乘積值。可見,從輸出
2013-01-22 15:54:30
DSP 移相 全橋逆變
需要一款DSP ?的PWM 可以移相 類似于模擬器件UC3875的移相功能 ?能通過寄存器的值或DSP的外部引腳 來改變移相角度 ?希望專家幫忙推薦 ?項目急!
2018-05-14 03:31:12
LLC變換器設計要素(資料下載)
最近 LCC 諧振變換器備受關注,因為它優于常規串聯諧振變換器和并聯諧振變換器:在負載和輸入變化較大時,頻率變化仍很小,且全負載范圍內切換可實現零電壓轉換(ZVS)。本文介紹了LLC 型諧振
2016-01-19 14:54:05
LLC諧振變換器的研究
LLC諧振變換器的研究諧振變換器相對硬開關PWM變換器,具有開關頻率高、關斷損耗小、效率高、重量輕、體積小、EMI噪聲小、開關應力小等優點。而LLC諧振變換器具有原邊開關管易實現全負載范圍內的ZVS
2018-07-26 08:05:45
LLC諧振變換器的設計要素
最近LCC諧振變換器備受關注,因為它優于常規串聯諧振變換器和并聯諧振變換器:在負載和輸入變 化較大時,頻率變化仍很小,且全負載范圍內切換可實現零電壓轉(ZVS)。本文介紹了LLC型諧振變換器的分析
2019-08-08 11:11:37
STM32F334 HRTIM形成移相全橋波形有異常
HRTIM形成移相全橋波形,Q1 Q2超前臂Q3 Q4滯后臂HRTIM1_CHC1-Q1HRTIM1_CHC2-Q2HRTIM1_CHB1-Q3HRTIM1_CHB2-Q4以下是CUBE里面的設置
2019-03-15 08:35:33
STM32單片機用于移相控制的全橋PWM變換器
關注、星標公眾號,不錯過精彩內容來源:STM32單片機用于移相控制的全橋PWM變換器是中大功率DC-DC變換電路中最常用的電路之一,由于其可以實現開關管的軟開關特性,在數字電源的設計中被...
2021-08-09 09:21:21
「分享」移相全橋DC-DC變換器建模及仿真
本篇我們將基于森木磊石自主研發的PPEC Workbench帶領大家進行電路參數設計,并利用Simulink進行仿真模型搭建,驗證移相全橋變換器的工作狀態。一、電路設計(一)拓撲設計之前的課程中
2023-12-04 11:12:41
【AT91SAM9261申請】大功率高頻移相全橋電動汽車充電樁
/DC變換電路,因移相全橋ZVZCS PWM變換器集ZVS PWM變換和ZCS PWM變換的優勢于一身,是目前最成功、應用最普遍的一類軟開關全橋變換器,故選其作為充電電源的DC/DC變換電路。移相全橋
2016-05-23 15:41:54
【實操】移相全橋DC-DC變換器快速設計與開發
前面我們分享了移相全橋電路的設計與電路建模仿真,本篇將基于PPEC-86CA3A移相全橋數字電源控制芯片以及PPEC Workbench開發軟件帶領大家進行實際移相全橋DC-DC變換器的設計與開發
2023-12-21 10:16:18
【拓撲資料】移相全橋拓撲組成及原理詳解
丟失
ZVS移相全橋DC/DC變換器在滯后臂開關管關斷后會出現副邊占空比丟失現象。
此時原邊電流反向,負載電流進入換向階段,原邊電流較小,不能供給負載電流,導致變壓器副邊兩個整流管都導通,電壓被二極管
2023-11-16 15:18:03
【精選推薦】移相全橋電源12種工作模態
ZVS),來實現恒頻軟開關,提升電源的整體效率與EMI性能,當然還可以提高電源的功率密度。 上圖是移相全橋的拓撲圖,各個元件的意義如下:Vin: 輸入的直流電源 T1-T4: 4個主開關管,一般
2021-05-08 06:30:00
【羅姆SiC-MOSFET 試用體驗連載】基于Sic MOSFET的直流微網雙向DC-DC變換器
項目名稱:基于Sic MOSFET的直流微網雙向DC-DC變換器試用計劃:申請理由本人在電力電子領域(數字電源)有五年多的開發經驗,熟悉BUCK、BOOST、移相全橋、LLC和全橋逆變等電路拓撲。我
2020-04-24 18:08:05
【資料】脈寬調制DC_DC全橋變換器的軟開關技術-阮新波嚴仰光-學習文檔PDF電子書資料
脈寬調制(PWM)DC/DC全橋變換器廣泛應用于中大功率場合,因此研究其軟開關技術具有十分重要的意義。本書共分為八章,介紹電力電子變換器的基本類型和PWM DC/DC全橋變換器的基本工作原理,系統
2022-07-28 14:27:36
什么是移相全橋?這12種模式給出全解析(1)
ZVS),來實現恒頻軟開關,提升電源的整體效率與EMI性能,當然還可以提高電源的功率密度。上圖是移相全橋的拓撲圖,各個元件的意義如下:Vin:輸入的直流電源T1-T4:4個主開關管,一般是MOSFET或
2020-08-19 07:39:08
什么是移相全橋?這12種模式給出全解析(2)
過程。這12個過程就構成了移相全橋的一個完整的工作周期,只要有任何一個過程發生偏離或異常,將會影響到移相全橋的ZVS效果,甚至會導致整個電源不能正常工作。接下來說說移相全橋存在的問題問題一:滯后臂較難
2020-08-20 07:53:41
利用PPEC 控制器來實現移相全橋電路控制分享
今天給大家介紹利用PPEC 控制器來實現移相全橋電路的控制。 首先,打開PPEC workbench 軟件。點擊新建工程來創建一個空白的項目工程文件。 在彈出的對話框中,選擇移相全橋的拓撲類型,點擊
2022-05-19 10:26:28
功率變換器中的功率磁性元件分布參數
:正激、反激、推挽、全橋移相、LLC等,磁集成,磁耦合;控制:控制芯片 控制電路,變壓器環節 濾波器環節;封裝:PCB繞組、繞組 同步MOS、超薄磁元件;元件:有源器件、電容、磁性元件(設計 定制
2021-11-09 06:30:00
雙向變換器
本人在做雙半橋雙向變換器,當變換器工作與BOOST狀態時,輸出電壓值總是打不到穩態值。低壓側輸入電壓為24V,高壓側輸出電壓為100V,現在高壓側輸出電壓只有96V。不知道什么原因。跪求大俠解答,不勝感激。
2016-04-14 21:18:38
變壓器副邊有源箝位式ZVZCS FB PWM變換器主電路分析
變壓器副邊有源箝位式ZVZCS FB PWM變換器主電路分析分析了一種變壓器副邊采用有源箝位的ZVZCS全橋移相式PWM變換器的主電路拓撲結構。該變換器適合于高電壓、大功率(>10
2009-12-16 10:48:29
基于移相全橋主電路的軟開關電源設計全解
開關電源采用了全橋變換器結構,使用MOSFET作為開關管來使用,參數為1000V/24A.采用移相ZVZCSPWM控制,即超前臂開關管實現ZVS、滯后臂開關管實現ZCS.電路結構簡圖如圖1,VT1
2018-09-30 16:18:15
基于移相控制的多路輸出降壓變換器兩種不同PCB布局
輸出的變換器傳導EMI進行了對比。同時,該電路采用移相控制,減小輸入電流紋波,從而優化輸入濾波器。從測試結果可以看出,U型布局的EMI性能優于I型布局的EMI性能,尤其是在高頻的部分。 圖4:移相控制
2019-03-13 06:45:01
如何對移相全橋諧振ZVS變換器進行測試?
ZVS-PWM諧振電路拓撲的電路原理和各工作模態分析200W移相全橋諧振ZVS變換器關鍵參數設計如何對200W移相全橋諧振ZVS變換器進行測試?
2021-04-22 06:25:56
淺析基于碳化硅MOSFET的諧振LLC和移相電路在新能源汽車的應用
電流急劇增大,對MOSFET體二極管反向性能要求更高,影響變換器的可靠性。移相電路實質是一個傳統PWM調制,開關頻率是固定的。只要改變移相角度就能夠實現寬輸入寬輸出范圍。唯一需要注意的是移相全橋電路存在
2016-08-25 14:39:53
電池驅動系統的DC-DC變換器選擇
較小,高頻功率變壓器的利用率高等優點。而且全橋DC-DC變換器適合做軟開關管控制,減小變換器中的開關管損耗提高轉化效率?! ∪?b class="flag-6" style="color: red">相全橋DC-DC變換器結構,三相的結構將電流、損耗均分到每相中,適合大功率
2023-03-03 11:32:05
請問controIsuite里的移相全橋PCB文件從哪里下載呢?
你好,在controIsuite里的移相全橋的硬件包里,只有Gerbers文件,請問PCB文件從哪里下載呢?
2018-10-08 16:59:01
諧振變換器的分類與區別
事先說明:其實本質上是對他人論文的說明,本質上是拾人牙慧,目錄LLC的意義所用參考論文諧振變換器的分類與區別串聯諧振 DC/DC 變換器并聯諧振 DC/DC 變換器串并聯諧振 DC/DC 變換器重點說明LLC的意義用諧振達到軟啟動的目的ZCS(零電流導通)與ZVS(零電壓導通)
2021-10-29 06:48:52
資料分享:LLC 諧振變換器的研究
摘要:高頻化、高功率密度和高效率,是 DC/DC 變換器的發展趨勢。傳統的硬開關變換器限制了開關頻率和功率密度的提高。移相全橋 PWM ZVS DC/DC 變換器可以實現主開關管的 ZVS,但滯后
2019-09-28 20:36:43
ZVS 移相全橋變換器開關管等損耗控制策略
ZVS 移相全橋變換器運行時超前橋臂和滯后橋臂開關管損耗明顯不同,使得大功率變換器散熱器設計困難,且影響了變換器可靠運行。本文在分析ZVS 移相全橋變換器超前橋臂和滯
2009-04-06 11:53:28
66

新型ZVS 軟開關直流變換器的研究
新型ZVS 軟開關直流變換器的研究:摘要:綜述了幾種新型的零電壓(ZVS)DC/DC變換器,并分析了變換器的優缺點,研究了一種新型MOSFET作為開關器件的三電平ZVS變換器,并分析了這種
2009-06-19 19:49:33
58

300V ZVZCS直流穩壓電源設計
摘要:為克服零電壓開關(zvs)變換器自身存在的初級環流較大,以及滯后臂開關實現ZVS受負載電流限制等缺點.利用零電壓零電流(zvzcs)~橋變換器設計了一種用于某新型金屬表面
2010-05-27 11:08:30
66

電動汽車車載充電機(OBC)與車載DC_DC轉換器 3.2 移相全橋ZVS變換器 #硬聲創作季
電源汽車電子車載電子DC轉換器ZVS移相全橋充電機充電樁
jf_06209345發布于 2022-09-13 22:30:47



改進型全橋移相ZVS-PWM DC/DC變換器
改進型全橋移相ZVS-PWM DC/DC變換器
摘要:介紹了一種能在全負載范圍內實現零電壓開關的改進型全橋移相ZVS-PWM DC/DC變換器。在分析
2009-07-11 10:16:59
1354


電流模式控制倍流整流器ZVS PWM全橋DC-DC變換器的研
電流模式控制倍流整流器ZVS PWM全橋DC-DC變換器的研究
1、引言 傳統的PWM DC/DC 移相全橋零電壓軟開關(ZVS)變換器利用變壓器的漏感或/和原邊串聯電感和開關管
2009-11-10 10:17:34
1902


零電壓開通(ZVS(PWM DC/DC變換器電路圖
零電壓開通(ZVS(PWM DC/DC變換器電路圖
拓撲結構:Buck DC/DC ZVS PWM 變換器。主開關T1(包含反并聯二極管D1),輔助二
2010-03-03 15:44:58
6600


雙向半橋零電壓開關變換器的研究
文中介紹了雙向半橋零電壓(ZVS)變換器的工作原理和不同時間段的等效電路圖,以及給出了實現軟開關的條件。并完成了控制電路的設計,仿真結果驗證了電路結構和控制方法的正確
2011-09-15 16:53:31
55

零電壓開關諧振功率變換
題以一個表演結束。ZVS變換器與它們的比較方波同行,及總結典型的應用。 零電壓開關綜述最好定義零電壓開關。常規方波功率轉換在開關的共振時間開關轉換。在大多數情況下,它可以方波功率利用恒定的關閉時間控制,改變轉換頻率,或保持時間輸出電
2017-06-09 15:09:25
10

零電壓開關諧振功率變換的應用筆記
。本課題最后對ZVS變換器與方波變換器的性能進行了比較,并對典型應用進行了總結。 介紹 諧振、準諧振功率變換技術提出了替代性解決沖突的方波轉換的設計目標的進展;在高開關頻率從高電壓源獲取高效運行。目前,傳統的方法目前仍處于生產主流。然而,
2017-06-27 10:51:48
10

無源鉗位ZVZCS變換器的關鍵參數的設計方法與仿真驗證
本文結合光伏并網逆變器的特點介紹了一種無源鉗位的ZVZCS變換器,此變換器較好地實現了超前臂的ZVS、滯后橋臂的ZCS,降低了系統的損耗;且原副邊占空比丟失較傳統的ZVS變換器有所減小
2019-05-09 08:03:00
2431


全橋移相ZVS控制器LTC3722-X的工作原理與如何實現自適應延時控制
隨著全橋移相ZVS技術的推出,使該技術在大功率領域中得到了廣泛的應用。通過引入超前臂和滯后臂的概念,人們提出了 多種實現ZVS的新方法,并得到了廣泛的實際應用。但是,全橋移相ZVS變換器仍然存在如下一些缺點:
2020-04-25 17:50:00
7182


逆變式切割電源的極點配置雙閉環控制資料詳細說明
switched,PS-FB-ZVS)變換器。首先介紹 PS-FB-ZVS 變換器的小信號模型,然后分析基于極點配置理論的雙閉環控制系統,進行逆變式切割電源的參數整定,最后通過仿真基金項目:國家
2020-06-08 08:00:00
0

改進型移相全橋ZVS DC-DC變換器的特點應用及控制電路設計
傳統的PWM DC/DC 移相全橋零電壓軟開關(ZVS)變換器利用變壓器的漏感或/和原邊串聯電感和開關管的外接或/和寄生電容之間的諧振來實現零電壓軟開關,由于超前橋臂和滯后橋臂實現零電壓軟開關ZVS
2021-03-09 14:09:00
7720


ZVS+PWM全橋三電平直流變換器
ZVS+PWM全橋三電平直流變換器(新型電源技術的理解)-ZVS+PWM全橋三電平直流變換器? ? ? ? ? ? ? ? ? ? ??
2021-08-31 18:45:04
33

具有移相控制的ZVS全橋DC-DC斬波變換器
具有移相控制的ZVS全橋DC-DC斬波變換器(通信電源技術雜志簡介)-具有移相控制的ZVS全橋DC-DC斬波變換器 ? ? ? ? ??
2021-08-31 18:56:38
38

移相ZVS變換器使用MOSFET器件的潛在風險分析
在過去的幾年中,對具有足夠效率來管理大功率的系統的市場需求促使開關電源設計人員開發具有低電損耗的拓撲。帶PWM相移控制全橋變換器是一種非常流行的拓撲結構。它能在大功率下實現高效率,并融合了硬開關技術
2022-04-01 16:18:39
1881


評論