卷積神經(jīng)網(wǎng)絡(luò)(CNN)是一種特殊類(lèi)型的神經(jīng)網(wǎng)絡(luò),在圖像上表現(xiàn)特別出色。卷積神經(jīng)網(wǎng)絡(luò)由Yan LeCun在1998年提出,可以識(shí)別給定輸入圖像中存在的數(shù)字。
2022-08-10 11:49:06
18294 卷積神經(jīng)網(wǎng)絡(luò)(CNN)是一種特殊類(lèi)型的神經(jīng)網(wǎng)絡(luò),在圖像上表現(xiàn)特別出色。卷積神經(jīng)網(wǎng)絡(luò)由Yan LeCun在1998年提出,可以識(shí)別給定輸入圖像中存在的數(shù)字。
2022-09-21 10:12:50
637 神經(jīng)網(wǎng)絡(luò)模型是一種機(jī)器學(xué)習(xí)模型,可以用于解決各種問(wèn)題,尤其是在自然語(yǔ)言處理領(lǐng)域中,應(yīng)用十分廣泛。具體來(lái)說(shuō),神經(jīng)網(wǎng)絡(luò)模型可以用于以下幾個(gè)方面: 語(yǔ)言模型建模:神經(jīng)網(wǎng)絡(luò)模型可以通過(guò)學(xué)習(xí)歷史文本數(shù)據(jù)來(lái)預(yù)測(cè)
2023-08-03 16:37:09
3435 在如今的網(wǎng)絡(luò)時(shí)代,錯(cuò)綜復(fù)雜的大數(shù)據(jù)和網(wǎng)絡(luò)環(huán)境,讓傳統(tǒng)信息處理理論、人工智能與人工神經(jīng)網(wǎng)絡(luò)都面臨巨大的挑戰(zhàn)。近些年,深度學(xué)習(xí)逐漸走進(jìn)人們的視線,通過(guò)深度學(xué)習(xí)解決若干問(wèn)題的案例越來(lái)越多。一些傳統(tǒng)的圖像
2024-01-11 10:51:32
596 
神經(jīng)網(wǎng)絡(luò)是計(jì)算智能和機(jī)器學(xué)習(xí)研究的最活躍的分支之一。本書(shū)全面系統(tǒng)地介紹神經(jīng)網(wǎng)絡(luò)的基本概念,系統(tǒng)理論和實(shí)際應(yīng)用。本書(shū)包含四個(gè)組成部分:導(dǎo)論,監(jiān)督學(xué)習(xí),無(wú)監(jiān)督學(xué)
2008-06-19 14:39:59
188 人工神經(jīng)網(wǎng)絡(luò)導(dǎo)論依照簡(jiǎn)明易懂、便于軟件實(shí)現(xiàn)、鼓勵(lì)探索的原則介紹人工神經(jīng)網(wǎng)絡(luò)。內(nèi)容包括:智能系統(tǒng)描述模型、人工神經(jīng)網(wǎng)絡(luò)方法的特點(diǎn);基本人工神經(jīng)元模型,人工神經(jīng)
2009-01-13 14:58:57
55 模糊神經(jīng)網(wǎng)絡(luò)提供了從人工神經(jīng)網(wǎng)絡(luò)中模糊規(guī)則的抽取。本文研究模糊神經(jīng)網(wǎng)絡(luò)的自適應(yīng)學(xué)習(xí)、規(guī)則插入和抽取及神經(jīng)-模糊推理的FuNN 模型。把遺傳算法作為系統(tǒng)模糊規(guī)則選擇的自
2009-06-06 13:45:42
18 根據(jù)神經(jīng)網(wǎng)絡(luò)的基本理論,研究了神經(jīng)網(wǎng)絡(luò)在電器設(shè)備中的應(yīng)用,提出了神經(jīng)網(wǎng)絡(luò)的分塊構(gòu)造方法和神經(jīng)網(wǎng)絡(luò)分塊學(xué)習(xí)算法,并通過(guò)實(shí)驗(yàn)?zāi)M達(dá)到實(shí)際要求。關(guān)鍵詞 神經(jīng)網(wǎng)絡(luò) 算法 權(quán)
2009-06-13 11:40:03
10 通過(guò)在我廠蒸餾裝置上軟儀表的具體使用情況,簡(jiǎn)單介紹了基于RBF 神經(jīng)網(wǎng)絡(luò)的軟儀表的開(kāi)發(fā),RBF 神經(jīng)網(wǎng)絡(luò)的特點(diǎn)、在建模中的應(yīng)用及RBF 神經(jīng)網(wǎng)絡(luò)改進(jìn)后的模型應(yīng)用。開(kāi)發(fā)軟儀表的
2009-08-14 15:15:07
6 模糊神經(jīng)網(wǎng)絡(luò)在GPS高程轉(zhuǎn)換中的應(yīng)用
摘要: 介紹了模糊神經(jīng)網(wǎng)絡(luò)基本原理和GPS 高程轉(zhuǎn)換方法, 采用模糊神經(jīng)網(wǎng)絡(luò)算法, 實(shí)現(xiàn)了GPS 高程轉(zhuǎn)換. 在用模糊神經(jīng)網(wǎng)絡(luò)進(jìn)
2010-04-26 11:27:28
12 摘要:以Chebyshev神經(jīng)網(wǎng)絡(luò)為基礎(chǔ),給出了非線性函數(shù)的仿真實(shí)例.并提出了用模擬電路實(shí)現(xiàn)Chebyshev神經(jīng)網(wǎng)絡(luò)的方法。關(guān)鍵詞:Chebyshev 神經(jīng)網(wǎng)絡(luò) 仿真 模擬電路
2010-05-06 10:42:51
6 探討了廣義回歸神經(jīng)網(wǎng)絡(luò)的原理和相關(guān)算法,將廣義回歸神經(jīng)網(wǎng)絡(luò)應(yīng)用于赤潮預(yù)警,并以米氏凱倫藻為例進(jìn)行了實(shí)驗(yàn)。與目前使用較為廣泛的BP神經(jīng)網(wǎng)絡(luò)進(jìn)行比較,結(jié)果表明,廣義回
2010-07-08 15:25:24
9 神經(jīng)網(wǎng)絡(luò)分類(lèi)
特征提取和選擇完成后,再利用分類(lèi)器進(jìn)行圖像目標(biāo)分類(lèi),本文采用神經(jīng)網(wǎng)絡(luò)中的BP網(wǎng)絡(luò)進(jìn)行分類(lèi)。在設(shè)計(jì)神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)時(shí),
2009-03-01 17:55:13
1507 
人工神經(jīng)網(wǎng)絡(luò),人工神經(jīng)網(wǎng)絡(luò)是什么意思
神經(jīng)網(wǎng)絡(luò)是一門(mén)活躍的邊緣性交叉學(xué)科.研究它的發(fā)展過(guò)程和前沿問(wèn)題,具有重要的理論意義
2010-03-06 13:39:01
3296 人工神經(jīng)網(wǎng)絡(luò)的內(nèi)容有哪些?
人工神經(jīng)網(wǎng)絡(luò)模型主要考慮網(wǎng)絡(luò)連接的拓?fù)浣Y(jié)構(gòu)、神經(jīng)元的特征、學(xué)習(xí)規(guī)則等。目前,已有近40種神經(jīng)
2010-03-06 13:42:45
1564 人工神經(jīng)網(wǎng)絡(luò)的特點(diǎn)有哪些?
人工神經(jīng)網(wǎng)絡(luò)突出的優(yōu)點(diǎn)
(1)可以充分逼近任意復(fù)雜的非線性關(guān)系; (2)所有定量或定性
2010-03-06 13:48:15
24281 近年來(lái),由于神經(jīng)網(wǎng)絡(luò)的研究取得了長(zhǎng)足的進(jìn)展,基于BP神經(jīng)網(wǎng)絡(luò)模型的速度辨識(shí)方法得到了廣泛研究,但其仍存在收斂速度慢、易陷入局部極小值等問(wèn)題,因此,對(duì)神經(jīng)網(wǎng)絡(luò)的優(yōu)化
2010-06-14 06:52:32
1108 
將 人工神經(jīng)網(wǎng)絡(luò) 模型應(yīng)用于天線設(shè)計(jì)中,可以提高天線設(shè)計(jì)的效率和精度。人工神經(jīng)網(wǎng)絡(luò)一旦被訓(xùn)練成功,再次使用其進(jìn)行天線設(shè)計(jì)時(shí),可以充分發(fā)揮神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)和泛化能力,提高
2011-06-22 16:42:16
67 人工神經(jīng)網(wǎng)絡(luò)(ArtificialNeuralNetworks,簡(jiǎn)寫(xiě)為ANNs)也簡(jiǎn)稱(chēng)為神經(jīng)網(wǎng)絡(luò)(NNs)或稱(chēng)作連接模型(ConnectionistModel),它是一種模范動(dòng)物神經(jīng)網(wǎng)絡(luò)行為特征,進(jìn)行分布式并行信息處理的算法數(shù)學(xué)模型。這
2011-08-16 17:12:31
0 提出了一種利用 小波神經(jīng)網(wǎng)絡(luò) 預(yù)測(cè)的武器試驗(yàn)脫靶量估計(jì)方法。以外測(cè)GPS測(cè)量彈道跟蹤數(shù)據(jù)為基準(zhǔn),建立小波神經(jīng)網(wǎng)絡(luò)模型,并將遙測(cè)慣導(dǎo)數(shù)據(jù)比對(duì)結(jié)果作為輸入,預(yù)測(cè)過(guò)靶時(shí)刻彈道
2011-08-29 14:40:18
20 matlab神經(jīng)網(wǎng)絡(luò)應(yīng)用設(shè)計(jì)詳細(xì)的介紹了matlab與神經(jīng)網(wǎng)絡(luò)的結(jié)合
2016-02-23 10:47:44
0 模糊控制與神經(jīng)網(wǎng)絡(luò)-北航,有需要的下來(lái)看看。
2016-04-11 17:33:16
0 人工神經(jīng)網(wǎng)絡(luò)建造,有需要的朋友下來(lái)看看。
2016-04-12 11:13:07
0 神經(jīng)網(wǎng)絡(luò)的基本介紹,matlab相應(yīng)代碼,基礎(chǔ)介紹。
2016-05-17 10:05:26
0 神經(jīng)網(wǎng)絡(luò)實(shí)驗(yàn)例程
2017-01-13 17:23:54
0 基于神經(jīng)網(wǎng)絡(luò)的聚類(lèi)方法研究_胡偉
2017-03-16 09:37:53
0 對(duì)卷積神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)進(jìn)行介紹,主要內(nèi)容包括卷積神經(jīng)網(wǎng)絡(luò)概念、卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)、卷積神經(jīng)網(wǎng)絡(luò)求解、卷積神經(jīng)網(wǎng)絡(luò)LeNet-5結(jié)構(gòu)分析、卷積神經(jīng)網(wǎng)絡(luò)注意事項(xiàng)。一、卷積神經(jīng)網(wǎng)絡(luò)概念 上世紀(jì)60年代
2017-11-16 01:00:02
10694 
人工神經(jīng)網(wǎng)絡(luò)是一種經(jīng)典的機(jī)器學(xué)習(xí)模型,隨著深度學(xué)習(xí)的發(fā)展神經(jīng)網(wǎng)絡(luò)模型日益完善。聯(lián)想大家熟悉的回歸問(wèn)題, 神經(jīng)網(wǎng)絡(luò)模型實(shí)際上是根據(jù)訓(xùn)練樣本創(chuàng)造出一個(gè)多維輸入多維輸出的函數(shù), 并使用該函數(shù)進(jìn)行預(yù)測(cè)
2017-11-16 12:26:52
6900 
之前在網(wǎng)上搜索了好多好多關(guān)于CNN的文章,由于網(wǎng)絡(luò)上的文章很多斷章取義或者描述不清晰,看了很多youtobe上面的教學(xué)視頻還是沒(méi)有弄懂,最后經(jīng)過(guò)痛苦漫長(zhǎng)的煎熬之后對(duì)于神經(jīng)網(wǎng)絡(luò)和卷積有了粗淺的了解
2017-11-16 13:18:40
56168 
人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,ANNs),也簡(jiǎn)稱(chēng)為神經(jīng)網(wǎng)絡(luò)(NNs),是模擬生物神經(jīng)網(wǎng)絡(luò)進(jìn)行信息處理的一種數(shù)學(xué)模型。它以對(duì)大腦的生理研究成果為基礎(chǔ),其目的在于
2018-07-13 09:24:00
21466 神經(jīng)網(wǎng)絡(luò)基本介紹,人工神經(jīng)網(wǎng)絡(luò)(簡(jiǎn)稱(chēng)神經(jīng)網(wǎng)絡(luò),Neural Network)是模擬人腦思維方式的數(shù)學(xué)模型。
神經(jīng)網(wǎng)絡(luò)是在現(xiàn)代生物學(xué)研究人腦組織成果的基礎(chǔ)上提出的,用來(lái)模擬人類(lèi)大腦神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和行為。神經(jīng)網(wǎng)絡(luò)反映了人腦功能的基本特征,如并行信息處理、學(xué)習(xí)、聯(lián)想、模式分類(lèi)、記憶等。
2017-12-06 15:07:50
0 模糊神經(jīng)網(wǎng)絡(luò)就是模糊理論同神經(jīng)網(wǎng)絡(luò)相結(jié)合的產(chǎn)物,它匯集了神經(jīng)網(wǎng)絡(luò)與模糊理論的優(yōu)點(diǎn),集學(xué)習(xí)、聯(lián)想、識(shí)別、信息處理于一體。
2017-12-29 14:40:40
47546 
模糊神經(jīng)網(wǎng)絡(luò)是將人工神經(jīng)網(wǎng)絡(luò)與模糊邏輯系統(tǒng)相結(jié)合的一種具有強(qiáng)大的自學(xué)習(xí)和自整定功能的網(wǎng)絡(luò),是智能控制理論研究領(lǐng)域中一個(gè)十分活躍的分支,因此模糊神經(jīng)網(wǎng)絡(luò)控制的研究具有重要的意義。本文旨在分析模糊神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn)及其用途。
2017-12-29 15:35:33
26481 我的母親是一名護(hù)士,目前已經(jīng)退休。她是一個(gè)非常聰明的人,對(duì)自己的工作業(yè)務(wù)非常的盡職盡責(zé)。幾天前我和她說(shuō)我正在研究Imagination最新的神經(jīng)網(wǎng)絡(luò)加速器,她詫異的說(shuō):“你說(shuō)的是什么意思?”,當(dāng)然只有她在護(hù)理學(xué)校進(jìn)行外科手術(shù)培訓(xùn)或者照顧老年癡呆患者時(shí)才會(huì)真正思考神經(jīng)網(wǎng)絡(luò)意味著什么。
2018-04-26 18:44:00
2760 這次就用TensorFlow寫(xiě)個(gè)神經(jīng)網(wǎng)絡(luò),這個(gè)神經(jīng)網(wǎng)絡(luò)寫(xiě)的很簡(jiǎn)單,就三種層,輸入層--隱藏層----輸出層;
2018-03-23 15:37:23
4983 
BP 神經(jīng)網(wǎng)絡(luò)是一類(lèi)基于誤差逆向傳播 (BackPropagation, 簡(jiǎn)稱(chēng) BP) 算法的多層前饋神經(jīng)網(wǎng)絡(luò),BP算法是迄今最成功的神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)算法。現(xiàn)實(shí)任務(wù)中使用神經(jīng)網(wǎng)絡(luò)時(shí),大多是在使用 BP
2018-06-19 15:17:15
42819 
由 Demi 于 星期四, 2018-09-06 09:33 發(fā)表 現(xiàn)在提到“神經(jīng)網(wǎng)絡(luò)”和“深度神經(jīng)網(wǎng)絡(luò)”,會(huì)覺(jué)得兩者沒(méi)有什么區(qū)別,神經(jīng)網(wǎng)絡(luò)還能不是“深度”(deep)的嗎?我們常用
2018-09-06 20:48:01
557 由 joycha 于 星期二, 2018-09-18 13:42 發(fā)表 1. 簡(jiǎn)單介紹 在機(jī)器學(xué)習(xí)和認(rèn)知科學(xué)領(lǐng)域,人工神經(jīng)網(wǎng)絡(luò)(artificial neural network,縮寫(xiě)ANN),簡(jiǎn)稱(chēng)
2018-09-18 22:40:01
517 人工神經(jīng)網(wǎng)絡(luò)( Artificial Neural Networks, 簡(jiǎn)寫(xiě)為ANNs)也簡(jiǎn)稱(chēng)為神經(jīng)網(wǎng)絡(luò)或稱(chēng)作連接模型,是對(duì)人腦或自然神經(jīng)網(wǎng)絡(luò)若干基本特性的抽象和模擬。
2018-11-24 09:21:11
14868 神經(jīng)網(wǎng)絡(luò)可以指向兩種,一個(gè)是生物神經(jīng)網(wǎng)絡(luò),一個(gè)是人工神經(jīng)網(wǎng)絡(luò)。生物神經(jīng)網(wǎng)絡(luò):一般指生物的大腦神經(jīng)元,細(xì)胞,觸點(diǎn)等組成的網(wǎng)絡(luò),用于產(chǎn)生生物的意識(shí),幫助生物進(jìn)行思考和行動(dòng)。
2018-11-24 09:25:32
22033 本視頻主要詳細(xì)介紹了神經(jīng)網(wǎng)絡(luò)分類(lèi),分別是BP神經(jīng)網(wǎng)絡(luò)、RBF(徑向基)神經(jīng)網(wǎng)絡(luò)、感知器神經(jīng)網(wǎng)絡(luò)、線性神經(jīng)網(wǎng)絡(luò)、自組織神經(jīng)網(wǎng)絡(luò)、反饋神經(jīng)網(wǎng)絡(luò)。
2019-04-02 15:29:22
12601 什么是人工智能神經(jīng)網(wǎng)絡(luò),大腦的結(jié)構(gòu)越簡(jiǎn)單,那么智商就越低。單細(xì)胞生物是智商最低的了。人工神經(jīng)網(wǎng)絡(luò)也是一樣的,網(wǎng)絡(luò)越復(fù)雜它就越強(qiáng)大,所以我們需要深度神經(jīng)網(wǎng)絡(luò)。這里的深度是指層數(shù)多,層數(shù)越多那么構(gòu)造的神經(jīng)網(wǎng)絡(luò)就越復(fù)雜。
2019-07-04 11:30:24
3713 很多同學(xué)入門(mén)機(jī)器學(xué)習(xí)之后,直接用TensorFlow調(diào)包實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò),對(duì)于神經(jīng)網(wǎng)絡(luò)內(nèi)在機(jī)理知之甚少。
2019-05-18 11:02:49
3348 
如果說(shuō)節(jié)點(diǎn)是神經(jīng)網(wǎng)絡(luò)的核心,那么激活函數(shù)和感知器就是神經(jīng)網(wǎng)絡(luò)核心的核心,幾乎在所有的神經(jīng)網(wǎng)絡(luò)中都可以看到他倆,這一小節(jié)我就來(lái)講解一下激活函數(shù)和感知器。
2020-03-20 19:21:43
1126 本文介紹了了12個(gè)將神經(jīng)網(wǎng)絡(luò)畫(huà)地更好看的工具。一個(gè)用于畫(huà)卷積神經(jīng)網(wǎng)絡(luò)的Python腳本
2020-06-13 14:10:56
3474 
BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò),其主要的特點(diǎn)是:信號(hào)是前向傳播的,而誤差是反向傳播的。具體來(lái)說(shuō),對(duì)于如下的只含一個(gè)隱層的神經(jīng)網(wǎng)絡(luò)模型:輸入向量應(yīng)為n個(gè)特征
2020-09-24 11:51:35
12811 
每當(dāng)我們訓(xùn)練自己的神經(jīng)網(wǎng)絡(luò)時(shí),我們都需要注意稱(chēng)為神經(jīng)網(wǎng)絡(luò)的?泛化?的問(wèn)題。從本質(zhì)上講,這意味著我們的模型在從給定數(shù)據(jù)中學(xué)習(xí)以及將...
2020-12-14 21:02:35
557 本文檔的主要內(nèi)容詳細(xì)介紹的是神經(jīng)網(wǎng)絡(luò)與神經(jīng)網(wǎng)絡(luò)控制的學(xué)習(xí)課件免費(fèi)下載包括了:1生物神經(jīng)元模型,2人工神經(jīng)元模型,3人工神經(jīng)網(wǎng)絡(luò)模型,4神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)方法
2021-01-20 11:20:05
7 卷積神經(jīng)網(wǎng)絡(luò) (Convolutional Neural Network, CNN) 是一種源于人工神經(jīng)網(wǎng)絡(luò)(Neural Network, NN)的深度機(jī)器學(xué)習(xí)方法,近年來(lái)在圖像識(shí)別領(lǐng)域取得了巨大
2021-03-25 09:45:21
7 個(gè) 2×3×1 的神經(jīng)網(wǎng)絡(luò)即輸入層有兩個(gè)節(jié)點(diǎn), 隱層含三個(gè)節(jié)點(diǎn), 輸出層有一個(gè)節(jié)點(diǎn),神經(jīng)網(wǎng)絡(luò)如圖示。
2021-03-25 10:03:05
10 神經(jīng)網(wǎng)絡(luò)基礎(chǔ)知識(shí)課件免費(fèi)下載。
2021-04-21 09:36:00
6 神經(jīng)網(wǎng)絡(luò)模型原理介紹說(shuō)明。
2021-04-21 09:40:46
7 神經(jīng)網(wǎng)絡(luò)在控制中的應(yīng)用總結(jié)說(shuō)明。
2021-04-21 09:51:05
7 人工神經(jīng)網(wǎng)絡(luò)分類(lèi)和其應(yīng)用說(shuō)明。
2021-04-21 09:51:36
5 神經(jīng)網(wǎng)絡(luò)及其在GIS中的應(yīng)用說(shuō)明。
2021-04-27 09:36:16
11 BP神經(jīng)網(wǎng)絡(luò)原理及應(yīng)用說(shuō)明。
2021-04-27 10:48:11
14 神經(jīng)網(wǎng)絡(luò)控制,即基于神經(jīng)網(wǎng)絡(luò)控制或簡(jiǎn)稱(chēng)神經(jīng)控制,是指在控制系統(tǒng)中采用神經(jīng)網(wǎng)絡(luò)這一工具對(duì)難以精確描述的復(fù)雜的非線性對(duì)象進(jìn)行建模,或充當(dāng)控制器,或優(yōu)化計(jì)算,或進(jìn)行推理,或故障診斷等,亦即同時(shí)兼有上述某些
2021-05-27 15:02:11
12 神經(jīng)網(wǎng)絡(luò)的基本原理說(shuō)明。
2021-05-27 15:26:05
8 神經(jīng)網(wǎng)絡(luò)控制基礎(chǔ)知識(shí)簡(jiǎn)介。
2021-05-31 16:37:40
9 掌握連續(xù)Hopfield神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和運(yùn)行機(jī)制,理解連續(xù)Hopfield神經(jīng)網(wǎng)絡(luò)用于優(yōu)化計(jì)算的基本原理,掌握連續(xù)Hopfield神經(jīng)網(wǎng)絡(luò)用于優(yōu)化計(jì)算的一般步驟。
2021-05-31 17:02:25
43 關(guān)于神經(jīng)網(wǎng)絡(luò)基礎(chǔ)問(wèn)題的整理分享。
2021-06-18 09:55:46
10 人工神經(jīng)網(wǎng)絡(luò)簡(jiǎn)稱(chēng)神經(jīng)網(wǎng)絡(luò),是一種模仿生物神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和功能的數(shù)學(xué)模型或計(jì)算模型,神經(jīng)網(wǎng)絡(luò)一般可以分為以下常用的三大類(lèi)。
2022-01-03 16:33:00
15624 本篇屬于MindSpore圖神經(jīng)網(wǎng)絡(luò)模型系列,主要分享MindSpore原創(chuàng)圖神經(jīng)網(wǎng)絡(luò)BGCF,十分歡迎各位一起探討圖神經(jīng)網(wǎng)絡(luò)算法的發(fā)展以及之后的應(yīng)...
2022-01-25 17:56:00
2 樹(shù)模型和神經(jīng)網(wǎng)絡(luò),像一枚硬幣的兩面。在某些情況下,樹(shù)模型的性能甚至優(yōu)于神經(jīng)網(wǎng)絡(luò)。
2022-07-27 16:17:01
838 圖神經(jīng)網(wǎng)絡(luò)將深度學(xué)習(xí)的預(yù)測(cè)能力應(yīng)用于豐富的數(shù)據(jù)結(jié)構(gòu)中,這些數(shù)據(jù)結(jié)構(gòu)將物體及其對(duì)應(yīng)關(guān)系描述為圖中用線連成的點(diǎn)。
2022-11-03 22:46:24
925 【源碼】卷積神經(jīng)網(wǎng)絡(luò)在Tensorflow文本分類(lèi)中的應(yīng)用
2022-11-14 11:15:31
393 神經(jīng)網(wǎng)絡(luò)一般可以分為以下常用的三大類(lèi):CNN(卷積神經(jīng)網(wǎng)絡(luò))、RNN(循環(huán)神經(jīng)網(wǎng)絡(luò))、Transformer(注意力機(jī)制)。
2022-12-12 14:48:43
4288 有個(gè)事情可能會(huì)讓初學(xué)者驚訝:神經(jīng)網(wǎng)絡(luò)模型并不復(fù)雜!『神經(jīng)網(wǎng)絡(luò)』這個(gè)詞讓人覺(jué)得很高大上,但實(shí)際上神經(jīng)網(wǎng)絡(luò)算法要比人們想象的簡(jiǎn)單。
2023-01-31 17:06:09
658 在介紹卷積神經(jīng)網(wǎng)絡(luò)之前,我們先回顧一下神經(jīng)網(wǎng)絡(luò)的基本知識(shí)。就目前而言,神經(jīng)網(wǎng)絡(luò)是深度學(xué)習(xí)算法的核心,我們所熟知的很多深度學(xué)習(xí)算法的背后其實(shí)都是神經(jīng)網(wǎng)絡(luò)。
2023-02-23 09:14:44
2256 本項(xiàng)目在之前項(xiàng)目分類(lèi)模型基礎(chǔ)上神經(jīng)網(wǎng)絡(luò)應(yīng)用(一)進(jìn)一步拓展神經(jīng)網(wǎng)絡(luò)應(yīng)用,相比之前本項(xiàng)目增加了新的知識(shí)點(diǎn),比如正則化,softmax函數(shù)和交叉熵?fù)p失函數(shù)等。
2023-02-24 15:43:47
1286 
有個(gè)事情可能會(huì)讓初學(xué)者驚訝:神經(jīng)網(wǎng)絡(luò)模型并不復(fù)雜!『神經(jīng)網(wǎng)絡(luò)』這個(gè)詞讓人覺(jué)得很高大上,但實(shí)際上神經(jīng)網(wǎng)絡(luò)算法要比人們想象的簡(jiǎn)單。
這篇文章完全是為新手準(zhǔn)備的。我們會(huì)通過(guò)用Python從頭實(shí)現(xiàn)一個(gè)神經(jīng)網(wǎng)絡(luò)來(lái)理解神經(jīng)網(wǎng)絡(luò)的原理。本文的脈絡(luò)是:
2023-02-27 15:05:34
451 
有個(gè)事情可能會(huì)讓初學(xué)者驚訝:神經(jīng)網(wǎng)絡(luò)模型并不復(fù)雜!『神經(jīng)網(wǎng)絡(luò)』這個(gè)詞讓人覺(jué)得很高大上,但實(shí)際上神經(jīng)網(wǎng)絡(luò)算法要比人們想象的簡(jiǎn)單。
這篇文章完全是為新手準(zhǔn)備的。我們會(huì)通過(guò)用Python從頭實(shí)現(xiàn)一個(gè)神經(jīng)網(wǎng)絡(luò)來(lái)理解神經(jīng)網(wǎng)絡(luò)的原理。本文的脈絡(luò)是:
2023-02-27 15:06:13
377 
有個(gè)事情可能會(huì)讓初學(xué)者驚訝:神經(jīng)網(wǎng)絡(luò)模型并不復(fù)雜!『神經(jīng)網(wǎng)絡(luò)』這個(gè)詞讓人覺(jué)得很高大上,但實(shí)際上神經(jīng)網(wǎng)絡(luò)算法要比人們想象的簡(jiǎn)單。
這篇文章完全是為新手準(zhǔn)備的。我們會(huì)通過(guò)用Python從頭實(shí)現(xiàn)一個(gè)神經(jīng)網(wǎng)絡(luò)來(lái)理解神經(jīng)網(wǎng)絡(luò)的原理。本文的脈絡(luò)是:
2023-02-27 15:06:18
467 
有個(gè)事情可能會(huì)讓初學(xué)者驚訝:神經(jīng)網(wǎng)絡(luò)模型并不復(fù)雜!『神經(jīng)網(wǎng)絡(luò)』這個(gè)詞讓人覺(jué)得很高大上,但實(shí)際上神經(jīng)網(wǎng)絡(luò)算法要比人們想象的簡(jiǎn)單。
這篇文章完全是為新手準(zhǔn)備的。我們會(huì)通過(guò)用Python從頭實(shí)現(xiàn)一個(gè)神經(jīng)網(wǎng)絡(luò)來(lái)理解神經(jīng)網(wǎng)絡(luò)的原理。本文的脈絡(luò)是:
2023-02-27 15:06:21
443 
來(lái)源:青榴實(shí)驗(yàn)室 1、引子 深度神經(jīng)網(wǎng)絡(luò)(DNNs)最近在圖像分類(lèi)或語(yǔ)音識(shí)別等復(fù)雜機(jī)器學(xué)習(xí)任務(wù)中表現(xiàn)出的優(yōu)異性能令人印象深刻。 在本文中,我們將了解深度神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識(shí)和三個(gè)最流行神經(jīng)網(wǎng)絡(luò):多層
2023-05-15 14:20:01
550 
在本文中,我們將了解深度神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識(shí)和三個(gè)最流行神經(jīng)網(wǎng)絡(luò):多層神經(jīng)網(wǎng)絡(luò)(MLP),卷積神經(jīng)網(wǎng)絡(luò)(CNN)和遞歸神經(jīng)網(wǎng)絡(luò)(RNN)。
2023-05-15 14:19:18
1096 
來(lái)源:青榴實(shí)驗(yàn)室1、引子深度神經(jīng)網(wǎng)絡(luò)(DNNs)最近在圖像分類(lèi)或語(yǔ)音識(shí)別等復(fù)雜機(jī)器學(xué)習(xí)任務(wù)中表現(xiàn)出的優(yōu)異性能令人印象深刻。在本文中,我們將了解深度神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識(shí)和三個(gè)最流行神經(jīng)網(wǎng)絡(luò):多層神經(jīng)網(wǎng)絡(luò)
2023-05-17 09:59:19
946 
神經(jīng)網(wǎng)絡(luò)是一個(gè)具有相連節(jié)點(diǎn)層的計(jì)算模型,其分層結(jié)構(gòu)與大腦中的神經(jīng)元網(wǎng)絡(luò)結(jié)構(gòu)相似。神經(jīng)網(wǎng)絡(luò)可通過(guò)數(shù)據(jù)進(jìn)行學(xué)習(xí),因此,可訓(xùn)練其識(shí)別模式、對(duì)數(shù)據(jù)分類(lèi)和預(yù)測(cè)未來(lái)事件。
2023-07-26 18:28:41
1623 
卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種基于深度學(xué)習(xí)的人工神經(jīng)網(wǎng)絡(luò),是深度學(xué)習(xí)技術(shù)的重要應(yīng)用之
2023-08-17 16:30:30
806 卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用 卷積神經(jīng)網(wǎng)絡(luò)通常用來(lái)處理什么 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡(jiǎn)稱(chēng)CNN)是一種在神經(jīng)網(wǎng)絡(luò)領(lǐng)域內(nèi)廣泛應(yīng)用的神經(jīng)網(wǎng)絡(luò)模型。相較于傳統(tǒng)
2023-08-21 16:41:45
3487 卷積神經(jīng)網(wǎng)絡(luò)概述 卷積神經(jīng)網(wǎng)絡(luò)的特點(diǎn) cnn卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點(diǎn)? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional neural network,CNN)是一種基于深度學(xué)習(xí)技術(shù)的神經(jīng)網(wǎng)絡(luò),由于其出色的性能
2023-08-21 16:41:48
1662 卷積神經(jīng)網(wǎng)絡(luò)模型有哪些?卷積神經(jīng)網(wǎng)絡(luò)包括哪幾層內(nèi)容? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是深度學(xué)習(xí)領(lǐng)域中最廣泛應(yīng)用的模型之一,主要應(yīng)用于圖像、語(yǔ)音
2023-08-21 16:41:52
1305 卷積神經(jīng)網(wǎng)絡(luò)模型原理 卷積神經(jīng)網(wǎng)絡(luò)模型結(jié)構(gòu)? 卷積神經(jīng)網(wǎng)絡(luò)是一種深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò),是在圖像、語(yǔ)音、文本和視頻等方面的任務(wù)中最有效的神經(jīng)網(wǎng)絡(luò)之一。它的總體思想是使用在輸入數(shù)據(jù)之上的一系列過(guò)濾器來(lái)捕捉
2023-08-21 16:41:58
604 卷積神經(jīng)網(wǎng)絡(luò)的工作原理 卷積神經(jīng)網(wǎng)絡(luò)通俗解釋? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是一種眾所周知的深度學(xué)習(xí)算法,是人工智能領(lǐng)域中最受歡迎的技術(shù)之一
2023-08-21 16:49:24
2216 卷積神經(jīng)網(wǎng)絡(luò)三大特點(diǎn)? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學(xué)習(xí)模型,其具有三大特點(diǎn):局部感知、參數(shù)共享和下采樣。 一、局部感知 卷積神經(jīng)網(wǎng)絡(luò)
2023-08-21 16:49:32
3048 卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積神經(jīng)網(wǎng)絡(luò)發(fā)展歷程 卷積神經(jīng)網(wǎng)絡(luò)三大特點(diǎn)? 卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是深度學(xué)習(xí)領(lǐng)域
2023-08-21 16:49:39
1144 卷積神經(jīng)網(wǎng)絡(luò)層級(jí)結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)的卷積層講解 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)模型,在許多視覺(jué)相關(guān)的任務(wù)中表現(xiàn)出色,如圖
2023-08-21 16:49:42
3760 卷積神經(jīng)網(wǎng)絡(luò)的介紹 什么是卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)涉及的關(guān)鍵技術(shù) 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種用于圖像分類(lèi)、物體識(shí)別、語(yǔ)音識(shí)別等領(lǐng)域
2023-08-21 16:49:46
1229 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò),主要用于圖像和視頻的識(shí)別、分類(lèi)和預(yù)測(cè),是計(jì)算機(jī)視覺(jué)領(lǐng)域中應(yīng)用最廣泛的深度學(xué)習(xí)算法之一。該網(wǎng)絡(luò)模型可以自動(dòng)從原始數(shù)據(jù)中學(xué)習(xí)有用的特征,并將其映射到相應(yīng)的類(lèi)別。
2023-08-21 17:03:46
1064 深度神經(jīng)網(wǎng)絡(luò)是一種基于神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)算法,其主要特點(diǎn)是由多層神經(jīng)元構(gòu)成,可以根據(jù)數(shù)據(jù)自動(dòng)調(diào)整神經(jīng)元之間的權(quán)重,從而實(shí)現(xiàn)對(duì)大規(guī)模數(shù)據(jù)進(jìn)行預(yù)測(cè)和分類(lèi)。卷積神經(jīng)網(wǎng)絡(luò)是深度神經(jīng)網(wǎng)絡(luò)的一種,主要應(yīng)用于圖像和視頻處理領(lǐng)域。
2023-08-21 17:07:36
1869 卷積神經(jīng)網(wǎng)絡(luò)算法代碼matlab 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學(xué)習(xí)網(wǎng)絡(luò)模型,其特點(diǎn)是具有卷積層(Convolutional Layer
2023-08-21 16:50:11
745 常見(jiàn)的卷積神經(jīng)網(wǎng)絡(luò)模型 典型的卷積神經(jīng)網(wǎng)絡(luò)模型 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是深度學(xué)習(xí)中最流行的模型之一,其結(jié)構(gòu)靈活,處理圖像、音頻、自然語(yǔ)言
2023-08-21 17:11:41
1646 cnn卷積神經(jīng)網(wǎng)絡(luò)模型 卷積神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型 生成卷積神經(jīng)網(wǎng)絡(luò)模型? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò),最初被廣泛應(yīng)用于計(jì)算機(jī)
2023-08-21 17:11:47
681 卷積神經(jīng)網(wǎng)絡(luò)模型搭建 卷積神經(jīng)網(wǎng)絡(luò)模型是一種深度學(xué)習(xí)算法。它已經(jīng)成為了計(jì)算機(jī)視覺(jué)和自然語(yǔ)言處理等各種領(lǐng)域的主流算法,具有很大的應(yīng)用前景。本篇文章將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)模型的搭建過(guò)程,為讀者提供一份
2023-08-21 17:11:49
543 卷積神經(jīng)網(wǎng)絡(luò)一共有幾層 卷積神經(jīng)網(wǎng)絡(luò)模型三層? 卷積神經(jīng)網(wǎng)絡(luò) (Convolutional Neural Networks,CNNs) 是一種在深度學(xué)習(xí)領(lǐng)域中發(fā)揮重要作用的模型。它是一種有層次結(jié)構(gòu)
2023-08-21 17:11:53
3338 卷積神經(jīng)網(wǎng)絡(luò)模型的優(yōu)缺點(diǎn)? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種從圖像、視頻、聲音和一系列多維信號(hào)中進(jìn)行學(xué)習(xí)的深度學(xué)習(xí)模型。它在計(jì)算機(jī)視覺(jué)、語(yǔ)音識(shí)別
2023-08-21 17:15:19
1881 卷積神經(jīng)網(wǎng)絡(luò)主要包括哪些 卷積神經(jīng)網(wǎng)絡(luò)組成部分 卷積神經(jīng)網(wǎng)絡(luò)(CNN)是一類(lèi)廣泛應(yīng)用于計(jì)算機(jī)視覺(jué)、自然語(yǔ)言處理等領(lǐng)域的人工神經(jīng)網(wǎng)絡(luò)。它具有良好的空間特征學(xué)習(xí)能力,能夠處理具有二維或三維形狀的輸入數(shù)據(jù)
2023-08-21 17:15:22
938 人工神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別? 人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network, ANN)是一種模仿人腦神經(jīng)元網(wǎng)絡(luò)結(jié)構(gòu)和功能的計(jì)算模型,也被稱(chēng)為神經(jīng)網(wǎng)絡(luò)(Neural
2023-08-22 16:45:18
2941 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種用于處理具有類(lèi)似網(wǎng)格結(jié)構(gòu)的數(shù)據(jù)的神經(jīng)網(wǎng)絡(luò)。它廣泛用于圖像和視頻識(shí)別、文本分類(lèi)等領(lǐng)域。CNN可以自動(dòng)從訓(xùn)練數(shù)據(jù)中學(xué)習(xí)出合適的特征,并以此對(duì)新輸入的數(shù)據(jù)進(jìn)行分類(lèi)或回歸等操作。
2023-08-22 18:20:37
1136 卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點(diǎn)? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)模型,在圖像識(shí)別、語(yǔ)音識(shí)別、自然語(yǔ)言處理等領(lǐng)域有著廣泛的應(yīng)用。相比
2023-12-07 15:37:25
2282
評(píng)論